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INTRODUCTION

General mathematical optimization theory comprises (at least) three major

subareas:

A. Discrete optimization

B. Finite dimensional optimization

C. Infinite dimensional optimization

This class covers the rigorous mathematical theory of finite dimensional

optimization methods, using techniques from calculus, linear algebra and

geometry.

The big math ideas for Math 170 are

(i) First variations

(ii) Second variations

(iii) Lagrange multipliers

(iv) Separating hyperplanes

(v) Convex functions

(vi) Value functions

(vii) Duality.

Math 170 is (mostly) about how these concepts occur throughout optimiza-

tion theory. It will not discuss discrete optimization, numerical methods,

software packages, or much on algorithms; definitely take CS and IEOR

courses for these. Notice that the word “programming” in this course means

optimization theory, not computer programming.

1



2 INTRODUCTION

Why are Lagrange multipliers important? Our most important

theme will be understanding Lagrange multipliers, and especially under-

standing when they exist.

• Lagrange multipliers are useful for computations.

• Lagrange multipliers often have physical, economic or other interpre-

tations.

• Lagrange multipliers appear in convex duality theory.

Important lessons. Some useful insights of mathematical philosophy

are that

constraints cause Lagrange multipliers to appear

and

Lagrange multipliers contain useful information.

Another piece of wisdom is that

you can never know too much about convexity.



Chapter 1

VARIATIONS

1.1. Unconstrained minimizers

In this section we are given a function f : Rn → R.

DEFINITION. A point x0 ∈ Rn is called a minimizer of f if

f(x0) ≤ f(x) for all x ∈ Rn.

We then write

f(x0) = min
x∈Rn

f(x).

1.1.1. First variation.

We wish to find ways to characterize minimizers.

THEOREM 1.1.1 (First variation). Assume f : Rn → R is differentiable

and x0 is a minimizer. Then

(1.1) ∇f(x0) = 0.

Equivalently, we have

(1.2)
∂f

∂xi
(x0) = 0 (i = 1, . . . , n).

Proof. Let y ∈ Rn, y = [y1, . . . , yn]T . For t ∈ R, we define

φ(t) := f(x0 + ty).

Then

φ(0) = f(x0) ≤ f(x0 + ty) = φ(t)

3



4 1. VARIATIONS

for each t ∈ R. So 0 is a minimizer of φ, and consequently the chain rule

from multivariable calculus (see the Appendix) lets us compute

0 = φ′(0) =

n∑
i=1

∂f

∂xi
(x0) yi.

This means that

∇f(x0) · y = 0 for all y ∈ Rn.

Take y = ∇f(x0) to deduce that ∇f(x0) = 0. �

DEFINITION. A point x ∈ Rn is called a critical point (or an ex-

tremal) for f if

∇f(x) = 0.

REMARK. So if x0 is a minimizer, then x0 is a critical point. Simple

examples show that the converse is false. �

1.1.2. Second variation.

NOTATION. A symmetric n× n matrix A is nonnegative definite if

yTAy =
n∑

i,j=1

aijyiyj ≥ 0 for all y ∈ Rn,

in which case we will write

A � 0.

�

INTERPRETATION. An important theorem of linear algebra says that

a symmetric n × n matrix has all real eigenvalues (and a corresponding

orthonormal basis of eigenvectors). For such a symmetric matrix A the

condition A � 0 means that all the eigenvalues are nonnegative.

See Appendix B for how to tell when a given symmetric matrix is non-

negative definite. �

THEOREM 1.1.2 (Second variation). Assume f : Rn → R is twice

differentiable and x0 is a minimizer. Then

∇2f(x0) � 0.



1.2. Applications 5

Proof. Define φ(t) = f(x0 + ty). Since t = 0 is a minimizer of φ, we again

apply the chain rule from multivariable calculus:

0 ≤ φ′′(0) =
n∑

i,j=1

∂2f

∂xi∂xj
(x0) yiyj .

�

REMARKS. (i) So if x0 is a minimizer of f , then the symmetric matrix

∇2f(x0) is nonnegative definite.

(ii) If x0 is only a local minimum of f , we can still conclude that

∇f(x0) = 0 and ∇2f(x0) � 0. �

1.2. Applications

The simple mathematical ideas in the previous section have lots of interesting

applications. Following is a selection.

1.2.1. Refraction and reflection.

a. Refraction. Consider two points A = (x1, y1) and B = (x2, y2)

lying in R2, with y2 < 0 < y1 and x1 < x2. Assume that the line {y = 0}
is an interface between two translucent materials, so that light moves with

the speed v1 in the upper half plane {y > 0} and with speed v2 in the lower

half plane {y < 0}.
According to Fermat’s principle, the light ray moves along a path that

takes the least time to travel from A to B. We wish to describe this path,

by introducing the point C = (x, 0), as drawn, where the light ray hits the

x-axis. Then if we set

d1 = |AC| = ((x− x1)2 + y21)
1
2 , d2 = |BC| = ((x− x2)2 + y22)

1
2 ,

the time it takes to travel along the piecewise straight path from A to B via

the point C is

f(x) =
d1
v1

+
d2
v2
.
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A

B

C

1

2

Refraction

We calculate that

f ′(x) = ((x− x1)2 + y21)−
1
2
x− x1
v1

+ ((x− x2)2 + y22)−
1
2
x− x2
v2

=
sin ξ1
v1
− sin ξ2

v2
,

for the angles ξ1, ξ2 as illustrated. The path of least time therefore passes

through the point C = (x0, 0) for which f ′(x0) = 0 and therefore

sin ξ1
v1

=
sin ξ2
v2

.

This is Snell’s Law for the diffraction of a light ray at the interface of two

materials within which light moves a different speeds.

b. Reflection. Similar considerations show that if a light ray goes

between the points A = (x1, y1) and B = (x2, y2), where now y1, y2 > 0,

by reflecting off the x-axis as illustrated, then the angles ξ of incidence and

reflection agree. In this case we minimize the total length of the path from

A to the x axis, and then back to B.

A
B

C

ξξ

Reflection

�



1.2. Applications 7

1.2.2. Steiner trees.

Suppose we are given three non-colinear points a1, a2, a3 lying in the

plane R2. We wish find another point s, called the Steiner point, so that

the sum of the lengths of the segments [a1, s], [a2, s], [a3, s] is as small as

possible. What can we deduce about the geometry of this configuration?

LEMMA 1.2.1. If the point s is not one of the points a1, a2, a3, then the

angles between the line segments [a1, s], [a2, s], [a3, s] are all equal to 2π
3 .

Proof. 1. We may assume, upon relabelling the coordinates if necessary,

that s = 0 and a1, a2, a3 6= 0. Thus x0 = 0 minimizes the function

f(x) = |x− a1|+ |x− a2|+ |x− a3|,

and therefore

0 = ∇f(0) = −
(
a1

|a1|
+

a2

|a2|
+

a3

|a3|

)
.

Hence the three unit vectors

a =
a1

|a1|
, b =

a2

|a2|
, c =

a3

|a3|
satisfy a+ b+ c = 0. We can therefore rearrange these unit vectors to form

the sides of a equilateral triangle. It follows that the angle between each

pair of the vectors a, b, c is 2π
3 . �

REMARK. Consider the triangle determined by a1, a2, a3. If each angle

is less than 2π
3 , a geometry argument shows that the Steiner point s is

the intersection of the three line segments passing through each vertex and

perpendicular to the opposite side.

a
3

a
1

a
2

s

Shortest connection for 3 vertices

However, if some angle in the triangle is greater than or equal to 2π
3 , the

Steiner point is the vertex of this angle, as drawn.

�
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a
3

a
1

a
2

Steiner point at a vertex of angle ≥ 2π
3

a
3

a
1

a
2

a
4

1

s

Using equilateral triangles to construct a Steiner tree (m=4).

REMARK. Suppose next that we wish to interconnect a collection {ak}mk=1

given points lying in the plane by a network of line segments of minimum

total length. This is called a Steiner tree. The theorem above shows that

at each triple junction the line segments meet at equal angles. Melzak [M,

page 140] shows that at most m − 2 additional vertices need to be added.

Melzak also explains a geometric construction for the additional vertices

needed to build the Steiner tree for the 4 points, as drawn. �

1.2.3. Electric circuits.

Consider an electric circuit comprising N + 2 nodes {nk}N+1
k=0 , some of

which are connected by resistors. If there is a resistor connecting nodes nk
and nl, we write

rkl = rlk > 0



1.2. Applications 9

for its resistance, and otherwise set rkl =∞. The corresponding conduc-

tance is

σkl =
1

rkl
≥ 0.

We connect an external battery that provides a voltage difference of E across

nodes n0 and nN+1. What then are the voltage differences between the other

nodes? What are the currents across the resistors?

nl

n0

nk

nN+1

rkl

A network of resistors

This physical problem is variational, meaning that it can be cast as the

optimization problem of minimizing an electrostatic energy function, defined

for the voltages v = [v1, . . . , vN ]T as

(1.3) e(v) =
1

2

∑
0≤k<l≤N+1

σkl(vk − vl)2,

where v0 = E and vN+1 = 0. We minimize the energy by setting

(1.4) 0 =
∂e

∂vm
(v) =

N+1∑
k=0

σkm(vm − vk) (m = 1, . . . , N)

In accordance with Ohm’s law, we define the current flowing from node

m to node k to be

(1.5) imk =
vm − vk
rkm

= σkm(vm − vk).

Then (1.4) gives Kirchhoff’s law

N+1∑
k=0

imk = 0 (m = 1, . . . , N),

asserting that the net current flow into and out of each internal node is

0. �
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1.2.4. Least squares.

Let A denote an m×n matrix and assume b ∈ Rm is given. If the linear

system

Ax = b

has no solution, we can nevertheless build an approximate solutions by find-

ing x0 ∈ Rn that solves the minimization problem

(1.6) min
x∈Rn

|Ax− b|2.

THEOREM 1.2.1. If ATA is invertible, the unique solution of (1.6) is

(1.7) x0 = (ATA)−1AT b.

Proof. Let f(x) = |Ax− b|2 = |Ax|2 − 2Ax · b+ |b|2. Observe first that

∇(Ax · b) = ∇(x ·AT b) = AT b.

It is not hard to check that ∇(x·Sx) = 2Sx if S is a symmetric n×n ma-

trix. Observe also that the rule (BC)T = CTBT implies ATA is symmetric.

Consequently,

∇|Ax|2 = ∇(Ax ·Ax) = ∇(x ·ATAx) = 2ATAx.

Therefore

∇f(x) = 2(ATAx−AT b);

and so ∇f(x0) = 0 implies (1.7).

We can use the Extreme Value Theorem (see the Appendix) to show

that f attains its minimum at least one point, which then must be given by

(1.7). �

We extend these ideas to study linear approximation of data points.

Given data points {(xk, yk) | k = 1, . . . , N}, where each xk ∈ Rn, yk ∈ R,

the least squares problem is to find m0 ∈ Rn, b0 ∈ R so that the plane

y = m0 · x+ b0

minimizes the total mean square error

(1.8) f(m, b) =
1

2

N∑
k=1

(yk − (m · xk + b))2 =
1

2

N∑
k=1

e2k,

where

ek = yk − (m · xk + b) (k = 1, . . . , N).
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NOTATION. (i) We write

x̄ =
1

N

N∑
k=1

xk, ȳ =
1

N

N∑
k=1

yk,

for the respective averages of {xk}Nk=1 and {yk}Nk=1.

(ii) The covariance matrix is the symmetric n × n matrix C whose

(i, j)-th entry is

(1.9) cij =
1

N

N∑
k=1

(xki − x̄i)(xkj − x̄j)

where xk = [xk1, . . . , x
k
n]T and x̄ = [x̄1, . . . , x̄n]T .

(iii) Define d = [d1, . . . , dn]T by

(1.10) di =
1

N

N∑
k=1

(xki − x̄i)(yk − ȳ).

THEOREM 1.2.2. If C is invertible, then a minimizer (m0, b0) of f sat-

isfies

(1.11)

{
m0 = C−1d

b0 = ȳ −m0 · x̄.

Proof. 1. We search for a minimizer by first setting the partial derivatives

of f to 0: 
0 =

∂f

∂b
(m, b)(1.12)

0 =
∂f

∂mi
(m, b) (i = 1 . . . , n) .(1.13)

These are n+ 1 equations for n+ 1 unknowns b,m1, . . . ,mn.

2. Using (1.12), we see that

0 =
∂f

∂b
=

N∑
k=1

ek
∂ek
∂b

=

N∑
k=1

ek(−1).

Consequently,

(1.14)

N∑
k=1

m · xk + b− yk = 0.
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Now look at (1.13):

0 =
∂f

∂mi
=

N∑
k=1

ek
∂ek
∂mi

=
N∑
k=1

ek(−xki ),

since ek = yk − (m · xk + b) = yk − (
∑n

j=1mjx
k
j + b). So

(1.15)
N∑
k=1

(m · xk + b− yk)xki = 0 (i = 1, . . . , n).

3. Next we solve (1.14) and (1.15) for b and m. Equation (1.14) says

(1.16) m · x̄+ b = ȳ.

Using (1.16) in (1.15), we see that

N∑
k=1

m · (xk − x̄)xki =

N∑
k=1

(yk − ȳ)xki (i = 1, . . . , n).

Then

(1.17)
N∑
k=1

m · (xk − x̄)(xki − x̄i) =
N∑
k=1

(yk − ȳ)(xki − x̄i) (i = 1, . . . , n),

since
∑N

k=1m · (xk − x̄) =
∑N

k=1(y
k − ȳ) = 0.

The identities (1.16) and (1.17) imply that a minimizer (m0, b0) solves

m0 · x̄+ b0 = ȳ and Cm0 = d. �

1.3. Equality constraints

We turn our attention now to optimization problems with constraints. As-

sume f, g1, . . . , gm : Rn → R are twice continuously differentiable functions.

NOTATION. We define g : Rn → Rm by

g =

 g1...
gm

 .
The gradient of g is

∇g =

 (∇g1)T
...

(∇gm)T

 =


∂g1
∂x1

. . . ∂g1
∂xn

...
. . .

...
∂gm
∂x1

. . . ∂gm
∂xn

 .
This is an m× n matrix-valued function. �
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Our constrained optimization problem is to find x0 ∈ Rn to

(MIN) minimize f, subject to g = 0.

The equations gk(x) = 0 for k = 1, . . . ,m are equality constraints.

DEFINITION. A point x ∈ Rn is called feasible for (MIN) if g(x) = 0;

that is, if gk(x) = 0 for k = 1, . . . ,m.

Hereafter we assume that x0 solves (MIN); our goal is to find ways to

characterize x0.

1.3.1. Lagrange multipliers.

The method of Lagrange multipliers reveals a linear relationship

between the gradients of f, g1, . . . , gm at a minimizer x0.

We discuss now three derivations, each informative, but none rigorous,

for the case of a single constraint (m = 1):

a. Geometric interpretation. Imagine that we drive a car along a

road and want to find a point of lowest elevation. The road is given by a

curve, drawn as red in the picture, and the constant elevation contours are

the curves drawn in blue.

We can drive back and forth along the road until we find the lowest

point x0. What is a geometric characterization of this location? The key

observation is that the red road is tangent to the blue elevation contour at

x0. For if not, then by driving either forward or backwards a little bit on

the road we could get to a lower elevation.

Δ
f

Δ
g x0

Highest elevation along a road
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We convert this insight into a mathematical formula, by introducing the

height function f . This means that f(x) is the altitude of any point x and

the blue curves are level curves for f . We can introduce as well a function

g such that the red road is a level curve of g, say the curve {g = 0}. In

mathematical terms, the point x0 minimizes the function f , subject to the

constraint g = 0.

Now a key insight from multivariable calculus is that the gradient of

a function at a point x is perpendicular to the level curve for the function

passing through x. Therefore, since the level curves of f and g are tangent

at x0, the gradient vectors ∇f(x0) and ∇g(x0) must be parallel. This in turn

means that there exists a constant λ0 such that

(1.18) ∇f(x0) + λ0∇g(x0) = 0.

We call λ0 a Lagrange multiplier. �

b. Fewer variables interpretation. Another idea is to convert our

constrained minimization problem (MIN) into an unconstrained problem in

fewer variables. So assume that x0 solves (MIN) and that near x0 we can

rewrite the constraint equation by solving for one of the variables, say xn:

g(x) = 0 ⇐⇒ xn = φ(x′)

where x′ = [x1, . . . , xn−1]
T and x′ is near x′0. Thus

g(x′, φ(x′)) = 0.

We differentiate this identity, to deduce

(1.19)
∂g

∂xi
+

∂g

∂xn

∂φ

∂xi
= 0 (i = 1, . . . , n− 1).

Since x0 solves (MIN), x′0 is an unconstrained minimizer of

f(x′, φ(x′)).

Hence

(1.20)
∂f

∂xi
+

∂f

∂xn

∂φ

∂xi
= 0 (i = 1, . . . , n− 1)

at x′0.

Now define

(1.21) λ0 = − ∂f

∂xn
(x0)

(
∂g

∂xn
(x0)

)−1
;

it then follows from (1.19) and (1.20) that the Lagrange multiplier formula

(1.18) holds.
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c. Value function interpretation. For each a ∈ R let us define the

value function

v(a) = min
y∈Rn
{f(y) | g(y) = a}.

Then for all x ∈ Rn we have

v(g(x)) ≤ f(x),

and furthermore

v(g(x0)) = v(0) = f(x0).

Consequently, the function

h(x) = f(x)− v(g(x))

has an unconstrained minimum at x0. Therefore

0 = ∇h(x0) = ∇f(x0)− v′(0)∇g(x0).

This says that the Lagrange multiplier formula (1.18) holds for

λ0 = −v′(0).

We see also that the Lagrange multiplier λ0 is the negative of the derivative

of the value function at a = 0. �

EXAMPLE. (Lagrange multipliers may not exist.) Unfortunately, it

is easy to come up with examples for which all three heuristic derivations

above completely fail.

For instance, let n = 2, m = 1,

f(x) = x1 + x2, g(x) = (x1)
2 + (x2)

2.

The solution of (MIN) is clearly x0 = [0 0]T , since this is the only feasible

point. But ∇f(x0) = [1 1]T , ∇g(x0) = 0 and therefore

∇f(x0) + λ∇g(x0) 6= 0

for all real numbers λ. There is no Lagrange multiplier!

What went wrong? Why do the three derivations discussed above fail

for this example?

a. The geometric derivation is not valid since the set of feasible x is a

point and not a smooth curve. So it is not true that “the level curves of f

and g are tangent at x0”.

b. The trick of converting to fewer variables similarly fails. In particular,

we cannot define λ0 by (1.21) since ∂g
∂x2

(x0) = 0.

c. The value function derivation also does not work, since we do not

know that the value function v is differentiable at a = 0. In fact, v is not
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even finite near 0. (There are no points x ∈ Rn satisfying g(x) = a if a < 0,

and the infimum of the empty set is +∞.) �

1.3.2. Constrained first variation.

In light of the example above, we need to think much more carefully

about when, and if, Lagrange multipliers exist.

THEOREM 1.3.1. Suppose that x0 solves the constrained optimization

problem (MIN).

Then there exist real numbers γ0, λ
1
0, . . . , λ

m
0 (not all equal to 0) such

that

(1.22) γ0∇f(x0) +

m∑
k=1

λk0∇gk(x0) = 0.

REMARK. This is F. John’s form of the constrained first variation

formula, in which we interpret each λk0 as the Lagrange multiplier for the

constraint gk(x0) = 0. We can also write (1.22) as

γ0∇f(x0) +∇g(x0)
Tλ0 = 0

for the vector of Lagrange multipliers

λ0 = [λ10 . . . λ
m
0 ]T .

When γ0 = 0, we call it an abnormal multipller. If γ0 6= 0, it is a

normal multiplier, in which case we can divide and convert to the case

γ0 = 1 (for possibly new constants λ10, . . . , λ
m
0 .) �

Proof. 1. Fix β > 0. For each α > 0 define

(1.23) Fα(x) := f(x) +
α

2
|g(x)|2 +

β

2
|x− x0|2.

We will later send α→∞; this procedure is the penalty method.

Let B = {x ∈ Rn | |x− x0| ≤ 1} denote the closed ball of radius 1 and

center x0. Since the function Fα : B → R is continuous and B is closed

and bounded, the Extreme Value Theorem (see the Appendix) tells us that

there exists a point xα ∈ B such that

Fα(xα) = min
x∈B

Fα(x).

Thus

(1.24) f(xα) +
α

2
|g(xα)|2 +

β

2
|xα − x0|2 = Fα(xα) ≤ Fα(x0) = f(x0),
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since g(x0) = 0. Therefore

{α|g(xα)|2}α>0

is bounded, and consequently

(1.25) lim
α→∞

g(xα) = 0.

2. Next, we use the Bolzano-Weierstrass Theorem (see Appendix) to

select a convergent subsequence {xαj}∞j=1 of {xα}α>0 ⊂ B so that

xαj → x̄

as αj →∞, for some x̄ ∈ B. Then (1.24) gives

(1.26) f(x̄) +
β

2
|x̄− x0|2 ≤ f(x0).

But (1.25) implies g(x̄) = 0 and therefore x̄ is feasible. Hence f(x0) ≤
f(x̄) since x0 solves (MIN). Thus (1.26) tells us that |x̄ − x0|2 = 0 and

therefore x̄ = x0. This is true for all convergent subsequences xαj → x̄ and

consequently

(1.27) lim
α→∞

xα = x0.

3. So if α is large enough, Fα has a minimum over B at the point xα
and, in view of (1.27), xα does not lie on the boundary of B. It follows that

(1.28) 0 = ∇Fα(xα) = ∇f(xα) + α∇g(xα)Tg(xα) + β(xα − x0).

We used here the formula

∇
(
|g|2

2

)
= ∇gTg.

Then

(1.29) 0 = γα∇f(xα) +∇g(xα)Tλα + γαβ(xα − x0),

for

γα = (1 + α2|g(xα)|2)−
1
2 , λα = γααg(xα).

4. Now γ2α + |λα|2 = 1 and therefore {(γα, λα)}α>0 is bounded. Conse-

quently, the Bolzano-Weierstrass Theorem asserts that there is a sequence

αj →∞ such that

γαj → γ0 in R, λαj → λ0 in Rm,

and (γ0, λ0) 6= (0, 0). Let α = αj → ∞ in (1.29) and recall (1.27) to derive

(1.22). �
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REMARKS. (i) This proof uses ideas from McShane [MS]; see also Bert-

sekas [B] and Borwein–Lewis [B-L]. The term β played no role, but will be

used in the later proof of Theorem 1.3.3.

(ii) The existence theory for Lagrange multipliers for inequality con-

straints of the form hj(x) ≤ 0 for j = 1, . . . , p is more complicated, and

will be discussed later. �

1.3.3. Regular points.

In the abnormal case, the first variation formula (1.22) does not involve

the function f we are minimizing and consequently may not be very useful.

Throughout these notes we will therefore be interested in situations for which

we have a normal multiplier γ0 = 1.

DEFINITION. We say the point x0 is regular if the vectors

{∇gk(x0)}mk=1 are linearly independent in Rn.

THEOREM 1.3.2. Suppose that x0 solves the constrained optimization

problem (MIN) and furthermore that x0 is regular.

Then there exist real numbers λ10, . . . , λ
m
0 such that

(1.30) ∇f(x0) +
m∑
k=1

λk0∇gk(x0) = 0.

REMARK. This is the usual form of the constrained first variation

formula, which we can also write as

∇f(x0) +∇g(x0)
Tλ0 = 0.

�

Proof. We know from (1.22) that

(1.31) γ0∇f(x0) +

m∑
k=1

λk0∇gk(x0) = 0

for constants γ0 and λ10, . . . , λ
m
0 that are not all zero.

We claim that if x0 is regular, then γ0 6= 0. To see this, suppose instead

that γ0 = 0; then
m∑
k=1

λk0∇gk(x0) = 0

and [λ10, . . . , λ
m
0 ]T 6= 0. But this is impossible, since the vectors {∇gk(x0)}mk=1

are independent.

We can therefore divide (1.31) by γ0 6= 0, to obtain an expression of the

form (1.30) (for possibly different constants λ10, . . . , λ
m
0 ). �
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REMARK. (Linear equality constraints) For many important prob-

lems the equality constraints are linear or affine, and therefore of the form

(1.32) g(x) = Ax− b = 0

where A is a non-zero m × n matrix and b ∈ Rm. For such constraints,

the regularity condition means that the rows of the matrix A are linearly

independent.

This need not necessarily be so for a given non-zero matrix A, but we

can always convert to an equivalent problem with affine constraints for which

the regularity condition holds.

To see this, we apply elementary row operations and transform the linear

system of constraints Ax = b into an equivalent system of linear equations,

having the form

(1.33) Āx = b̄

where Ā is a l× n matrix for some integer l ∈ {1, . . . ,m}, b̄ ∈ Rl and Ā has

full rank l. (If we cannot convert (1.32) into this form, then there are no

feasible x satisfying (1.32).) Now every point is regular for the equivalent

problem of minimizing f subject to the constraints

ḡ(x) = Āx− b̄ = 0.

Consequently, Theorem 1.3.2 guarantees the existence of Lagrange multipli-

ers such that

∇f(x0) +

l∑
j=1

λ̄j0ā
j = 0.

Here {āj}lj=1 are the rows of Ā. Since the rows of Ā are linear combinations

of the rows of A, we can rewrite this as

∇f(x0) +

m∑
k=1

λk0ak = 0.

for appropriate Lagrange multipliers and the rows {ak}mk=1 of A. �

1.3.4. Constrained second variation.

We discuss next how to compute second variations when we have regular

equality constraints.

LEMMA 1.3.1. If x0 is regular, then the m×m matrix

∇g(x0)∇g(x0)
T

is nonsingular.
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Proof. Suppose y ∈ Rm and

∇g(x0)∇g(x0)
T y = 0.

We must show y = 0. To do so, take the inner product with y:

0 = y · ∇g(x0)∇g(x0)
T y = |∇g(x0)

T y|2.

(We used here the linear algebra formula (Ax) · y = x · (AT y).) Therefore

0 = ∇g(x0)
T y =


∂g1
∂x1

. . . ∂gm
∂x1

...
. . .

...
∂g1
∂xn

. . . ∂gm
∂xn


 y1...
ym

 =
m∑
k=1

yk∇gk(x0).

Since the vectors {∇gk(x0)}mk=1 are independent, it follows that y = 0. �

THEOREM 1.3.3. Suppose that x0 solves the constrained optimization

problem (MIN) and that x0 is regular. Let λ10, . . . , λ
m
0 be corresponding

Lagrange multipliers, satisfying the first variation formula (1.30).

Then

(1.34) yT

(
∇2f(x0) +

m∑
k=1

λk0∇2gk(x0)

)
y ≥ 0

for all y ∈ Rn such that

(1.35) ∇g(x0)y = 0.

This is the constrained second variation formula.

Proof. 1. We return to the proof of Theorem 1.3.1 and extract more de-

tailed information. Since x0 is regular, we know from Theorem 1.3.2 that

γα = (1 + α2|g(xα)|2)−
1
2 → γ0 6= 0.

Hence {α|g(xα)|}α>0 is bounded. We can therefore assume, passing if nec-

essary to a further subsequence, that

(1.36) αjg(xαj )→ λ0.

2. Since xα lies within the interior of the ball B for large α, we have

0 ≤ zT∇2Fα(xα)z for all z ∈ Rn.

Now

∇2Fα(x) = ∇2f(x) + α∇g(x)T∇g(x) + α
m∑
k=1

gk(x)∇2gk(x) + βI;

hence
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(1.37) zT

(
∇2f(xα) + α∇g(xα)T∇g(xα)

+ α
m∑
k=1

gk(xα)∇2gk(xα) + βI

)
z ≥ 0.

Remember from the Lemma that ∇g(x0)∇g(x0)
T is nonsingular; con-

sequently ∇g(xα)∇g(xα)T is invertible for large α. Given now y ∈ Rm
with

(1.38) ∇g(x0)y = 0,

define

(1.39) zα := y −∇g(xα)T
(
∇g(xα)∇g(xα)T

)−1∇g(xα)y.

Then

∇g(xα)zα = 0.

Observe also that

zα → y as α→∞.

This follows since xα → x0 and ∇g(x0)y = 0.

3. Now put z = zα in (1.37):

(1.40) 0 ≤ (zα)T

(
∇2f(xα) + α

m∑
k=1

gk(xα)∇2gk(xα) + βI

)
zα.

Let α→∞ in (1.40) and recall (1.36):

0 ≤ yT
(
∇2f(x0) +

m∑
k=1

λk0∇2gk(x0) + βI

)
y.

To conclude, send β → 0. �

1.4. Applications

We present next some interesting applications and interpretations of La-

grange multipliers, and many other examples appear later in these notes.

Nahin’s book [N] has lots of other fascinating applications of finding max-

ima and minima.
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1.4.1. Fluid equilibria.

Lagrange multipliers often have physical interpretations, as we illustrate

in this neat example from equilibrium fluid mechanics (M. Levi, SIAM News,

May, 2020).

Suppose that we have sitting on a table n differently shaped containers,

which we connect with small tubes at their bases, to allow water to flow

freely between them. We then pour in a volume V of water, which freely

flows among the containers. We will use Lagrange multipliers to demonstrate

a version of Pascal’s principle, that at equilibrium the heights of the fluid

in each container are all equal, regardless of the shapes of the individual

vessels. .

To see this, let us denote by ak(y) > 0 the cross sectional area of the

k-th container at distance y above the table. Then if xk is the height of

water in that vessel, the volume of water within is∫ xk

0
ak(y) dy

and the gravitational potential energy of the water in that container is pro-

portional to ∫ xk

0
yak(y) dy.

The guiding physical principle is that the water will minimize the total

potential energy

f(x1, . . . , xn) =

n∑
k=1

∫ xk

0
yak(y) dy,

subject to the volume constraint

g(x1, . . . , xn) =
n∑
k=1

∫ xk

0
ak(y) dy − V = 0.

Since ∇g 6= 0, the optimal heights x0 = [x01, . . . , x
0
n]T satisfy

(1.41) ∇f(x0) + λ0∇g(x0) = 0

for an appropriate Lagrange multiplier. Since

∂f

∂xk
= xkak(xk),

∂g

∂xk
= ak(xk),

(1.41) tells us that

x0kak(x
0
k) + λ0ak(x

0
k) = 0 (k = 1, . . . , n);

and so

x0k = −λ0 (k = 1, . . . , n).
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In particular, the Lagrange multiplier is (minus) the common height of the

water in the various containers.

1.4.2. Maximizing entropy.

Statistical physics often studies questions about maximizing entropy or

minimizing free energy. For the simplest such problems, we introduce the

set

P =

{
p ∈ Rm | pi ≥ 0 (i = 1, . . . ,m),

m∑
i=1

pi = 1

}
of probability distributions on the integers {1, . . . ,m}.

DEFINITION. For each p ∈ P , the corresponding Shannon entropy is

(1.42) e(p) = −
m∑
i=1

pi log pi,

with the convention that 0 log 0 = 0.

A fundamental question in statistical physics is to find which distribu-

tions p0 ∈ P maximize the entropy, subject to various constraints.

• Uniform distribution. First suppose we have no additional con-

straints beyond those in the definition of P . We assume also that we can

ignore the inequality constraints p ≥ 0 (which turn out to hold automatically

for a minimizer). Then there exists a Lagrange multiplier λ so that

−∇e(p) + λ∇

(
m∑
i=1

pi

)
= 0.

This implies

log pi + 1 + λ = 0 (i = 1, . . . ,m).

So all the pi are equal, and therefore the uniform distribution p0 = [ 1
m , . . . ,

1
m ]T

maximizes the entropy.

• Gibbs distribution. More interesting distributions appear if we add

additional constraints. So assume we are given positive constants {Ei}mi=1

and interpret Ei as the “energy level” of the state i ∈ {1, . . . ,m}.

THEOREM 1.4.1. Let p0 = [p10, . . . , p
m
0 ]T give the maximum of the en-

tropy over P , subject to the additional constraint that the expected energy

is given:

(1.43)

m∑
i=1

piEi = E.
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Then there exists a constant β such

(1.44) pi0 =
e−βEi

Z
(i = 1, . . . ,m)

for

(1.45) Z =
m∑
i=1

e−βEi .

Physicists call (1.44) the Gibbs (or Boltzmann) distribution and

(1.45) the partition function.

Proof. Since the constraints are linear, according to the Remark on page

19 there exist Lagrange multipliers λ and β such that

−∇e(p0) + λ∇

(
m∑
i=1

p0i

)
+ β∇

(
m∑
i=1

p0iEi − E

)
= 0

for a maximizer p0. Therefore

log pi0 + 1 + λ+ βEi = 0

and so (1.44) follows, provided we select the normalizing constant Z so that∑m
i=1 p

i
0 = 1. �

1.4.3. More on electric circuits.

We next return to the electric circuit example on page 8 and show how to

recast the problem with the currents, and not the voltages, as the unknowns.

So given as before the N + 2 nodes connected by resistors, we denote by

ikl the current flowing from node k to node l. Then

(1.46) ikk = 0, ikl = −ilk (k, l = 0, . . . , N + 1).

We furthermore assume that Kirchhoff’s law holds at the internal nodes:

(1.47)

N+1∑
l=0

iml = 0 (m = 1, . . . , N).

Let the total current flowing through the network (from node n0 to node

nN+1) be I; then

(1.48)

N+1∑
l=0

i0l = I,

N+1∑
k=0

ik,N+1 = I.

Hereafter, we introduce the variables

i = {ikl | 0 ≤ k < l ≤ N + 1}
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and use (1.46) to define ikl for 0 ≤ l ≤ k ≤ N + 1. Define also the functions

f(i) =
1

2

∑
0≤k<l≤N+1

rkl(ikl)
2

and

gm(i) =

N+1∑
l=0

iml (m = 0, . . . , N + 1).

Our new variational problem is{
minimize f(i), subject to

g0(i) = I, gN+1(i) = −I, gm(i) = 0 (m = 1, . . . , N).

Assume that i is a minimizing selection of currents. Then, since our

constraints are linear, there exist Lagrange multipliers λ0, . . . , λN+1 such

that

(1.49) ∇f(i) +
N+1∑
m=0

λm∇gm(i) = 0.

PHYSICAL INTERPRETATION. What are the meanings of the La-

grange multipliers and of formula (1.49)? We compute that

∂f

∂ikl
= rklikl (0 ≤ k < l ≤ N + 1).

Furthermore, since

gm(i) =

N+1∑
l=0

iml = −
m∑
l=0

ilm +

N+1∑
l=m

iml,

we have for 0 ≤ k < l ≤ N + 1 that

∂gm
∂ikl

=


1 if m = k < l

−1 if k < l = m

0 otherwise.

Therefore (1.49) implies

(1.50) rklikl + λk − λl = 0

for the indices 0 ≤ k < l ≤ N + 1. Define now the voltages

vk = −λk (k = 0, . . . , N + 1);

then (1.50) says

(1.51) ikl =
vk − vl
rkl

.
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This is again Ohm’s law, and our new variational principle shows that the

voltages are the Lagrange multipliers for the constraints imposed by Kirch-

hoff’s law. �

1.4.4. Roots of polynomials.

A novel application of Lagrange multipliers (from de Jong [dJ]) shows

the existence of a root for a complex polynomial of degree n ≥ 1:

f(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 (z ∈ C).

The coefficients a0, . . . , an−1 here are complex numbers.

If we substitute z = x + iy and expand, we can write f in terms of its

real and imaginary parts

(1.52) f(z) = u(x, y) + iv(x, y) (x, y ∈ R),

where u, v : R2 → R are polynomials.

LEMMA 1.4.1. The functions u, v solve the Cauchy-Riemann equa-

tions

(1.53)
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Proof. We first apply induction to f(z) = zn. The case n = 1 is clear. Now

write

zn = un(x, y) + ivn(x, y)

and assume (1.53) holds for un, vn. Then

zn+1 = (x+ iy)(un + ivn) = (xun − yvn) + i(xvn + yun) = un+1 + ivn+1.

So the induction hypothesis lets us compute

∂un+1

∂x
= un + x

∂un
∂x
− y∂vn

∂x

= un + x
∂vn
∂y

+ y
∂vn
∂y

=
∂vn+1

∂y
.

Likewise ∂un+1

∂y = −∂vn+1

∂x . This proves (1.53) for f(z) = zn and the proof

for general polynomials follows by linearity. �

THEOREM 1.4.2 (Fundamental Theorem of Algebra). There exists

a point z0 ∈ C for which

(1.54) f(z0) = 0.
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Proof. 1. We introduce for c ∈ R the level sets

Lc = {(x, y) ∈ R2 | u(x, y) = c}, Mc = {(x, y) ∈ R2 | v(x, y) = c}.

Since u(x, 0) = xn+ lower order terms, the function u(x, 0) takes on infinitely

many values. It follows that the sets Lc are nonempty for infinitely many

values of the parameter c.

We observe next that except for finitely many values of c, we have

(1.55) ∇u 6= 0 on Lc, ∇v 6= 0 on Mc.

To see this, note that f ′ is a polynomial, and consequently has at most

finitely many zeros. But f ′ = ∂u
∂x + i ∂v∂x = ∂u

∂x− i
∂u
∂y , according to the Cauchy-

Riemann equations (1.53), and therefore ∇u 6= 0 except at finitely many

points. This shows the first assertion of (1.55), and the second assertion has

a similar proof.

2. Select a value of the parameter c so that Lc 6= ∅ and ∇u 6= 0 on Lc.

We introduce the constrained optimization problem

(1.56)

{
minimize v2,

subject to u = c.

Since u2 + v2 = |f |2 → ∞ as |z| → ∞, we can use the Extreme Value

Theorem to show that there exists a point (xc, yc) ∈ Lc solving (1.56).

We claim that

(1.57) v(xc, yc) = 0.

To see this, note that since ∇u 6= 0 on Lc, (xc, yc) is a regular point. Hence

Theorem 1.3.2 asserts that there exists a Lagrange multiplier λ such that

2v(xc, yc)∇v(xc, yc) + λ∇u(xc, yc) = 0.

But the Cauchy-Riemann equations (1.53) imply ∇u · ∇v = 0 and |∇u| =

|∇v|. Since ∇u(xc, yc) 6= 0, it follows that λ = 0 and (1.57) holds.

3. In view of (1.57), we see that

M0 6= ∅.

Select a sequence ck → 0, such that Mck 6= ∅ and ∇v 6= 0 on Mck .

Then the argument above (with the roles of u and v reversed) shows that

there exist points (xk, yk) ∈ Mck for which u(xk, yk) = 0. The sequence

{(xk, yk)}∞k=1 is bounded, and so, passing if necessary to a subsequence, we

may assume

(xk, yk)→ (x0, y0) ∈M0.

Then u(x0, y0) = v(x0, y0) = 0, and therefore f(z0) = 0 for z0 = x0+iy0. �
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EXAMPLE. If f(z) = z3− z2 + z+ 8, then f = u+ iv for u = x3−3xy2−
x2 + y2 + x+ 8 and v = 3x2y − y3 − 2xy + y.

The three roots of f(z) = 0 are the intersections of the level sets {u = 0}
(drawn in blue) and {v = 0} (drawn in red). �



Chapter 2

LINEAR
OPTIMIZATION

Linear optimization theory, most commonly known as linear program-

ming, concerns the minimization of linear functions, subject to affine equal-

ity and inequality constraints. We will follow Franklin [F1, F2] for much of

the presentation.

2.1. Theory

2.1.1. Basic concepts.

NOTATION. (i) If x = [x1, . . . , xn]T ∈ Rn, we write

x ≥ 0

to mean that xi ≥ 0 for i = 1, . . . , n. Similarly,

x > 0

means xi > 0 (i = 1, . . . , n).

(ii) If x, y ∈ Rn, we write

x ≥ y

if xi ≥ yi (i = 1, . . . , n), and

x > y

if xi > yi (i = 1, . . . , n).

29
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DEFINITION. Let c ∈ Rn, b ∈ Rm and assume A is an m × n matrix.

The canonical primal linear programming problem is to find x0 ∈ Rn
to

(P)

{
minimize c · x,

subject to Ax = b, x ≥ 0.

DEFINITION. We say x ∈ Rn is feasible if Ax = b, x ≥ 0, that is, if

x satisfies the constraints in (P). We will often call a feasible x a feasible

solution.

DEFINITION. The canonical dual problem is to find y0 ∈ Rm to

(D)

{
maximize b · y

subject to AT y ≤ c.

DEFINITION. We say y ∈ Rm is feasible for (D) if AT y ≤ c.

EXAMPLE. Consider the problem
minimize x1 + 2x2 + 3x3, subject to

x1 − 2x2 + x3 = 4

−x1 + 3x2 = 5

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Here n = 3 and m = 2. In the above notation,

c =

1

2

3

 , x =

x1x2
x3

 , b =

[
4

5

]
, A =

[
1 −2 1

−1 3 0

]
.

The dual problem is
maximize 4y1 + 5y2, subject to

y1 − y2 ≤ 1

−2y1 + 3y2 ≤ 2

y1 ≤ 3.

There are no inequality constraints on y1, y2. �

The most important fact of linear programming is that the primal and

dual problems contain information about each other :
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THEOREM 2.1.1 (Duality and optimality).

(i) If x is feasible for (P) and y is feasible for (D), then

(2.1) b · y ≤ c · x

(ii) If x0 is feasible for (P), y0 is feasible for (D), and if

(2.2) b · y0 = c · x0,

then x0 solves (P) and y0 solves (D).

Proof. 1. Let x, y be feasible. Then Ax = b, x ≥ 0 and AT y ≤ c. Now

AT y ≤ c means (AT y)i ≤ ci for i = 1, . . . , n, and x ≥ 0 means xi ≥ 0 for

i = 1, . . . , n. Consequently,

y · b = y · (Ax) = AT y · x =

n∑
i=1

xi(A
T y)i ≤

n∑
i=1

xici = x · c.

2. Suppose x0, y0 are feasible and

b · y0 = c · x0.

By (2.1), b · y0 ≤ c ·x for all feasible x for (P). So c ·x0 ≤ c ·x for all feasible

x, and thus x0 is optimal for (P). A similar argument works for y0. �

EXAMPLE. Consider the problem (P) to
minimize x1 + 5x2 + 2x3 + 13x4, subject to

5x1 − 6x2 + 4x3 − 2x4 =0

x1 − x2 + 6x3 + 9x4 =16

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Look at x0 = [0, 2, 3, 0]T . It is easy to check that x0 ≥ 0, Ax0 = b, and we

calculate that c · x0 = 16.

But is x0 optimal? To answer, we look at the dual problem (D):

maximize 0 · y1 + 16 · y2, subject to
5y1 + y2 ≤1

−6y1 − y2 ≤5

4y1 + 6y2 ≤2

−2y1 + 9y2 ≤13.

Let us guess that y0 = [−1, 1]T , and check AT y0 ≤ c. We see that c ·y0 = 16.

Since b · x0 = c · y0, it follows that x0 and y0 are each optimal. �
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OTHER FORMS OF LINEAR PROGRAMMING PROBLEMS

DEFINITION. The standard linear programming problem is to find

x0 ∈ Rn to

(P ∗)

{
minimize c · x

subject to Ax ≥ b, x ≥ 0.

Observe that both constraints are now inequalities.

DEFINITION. The dual standard linear programming problem is

to find y0 ∈ Rm to

(D∗)

{
maximize b · y

subject to AT y ≤ c, y ≥ 0.

Note carefully that we now have the additional sign constraint y ≥ 0.

The reader should check that the duality and optimality theorem (Theorem

2.1.1) applies to (P*) and (D*).

DEFINITION. The general linear programming problem is to find

x0 ∈ Rn to

(P ◦)


minimize c · x,

subject to


∑n

j=1 aijxj ≥ bi (i ∈ I1)∑n
j=1 aijxj = bi (i ∈ I2)

xj ≥ 0 (j ∈ J1),

where I1 ∪ I2 = I, I1 ∩ I2 = ∅, J1 ⊆ J , I = {1, . . . ,m} and J = {1, . . . , n}.
Here I1, J1 are the indices of the inequality constraints.

NOTATION. We write

[A, b, c, I1, J1]

to display the relevant information determining (P◦). �

DEFINITION. The dual of the general linear programming prob-

lem is to find y0 ∈ Rm to

(D◦)


maximize b · y,

subject to


∑m

i=1 yiaij ≤ cj (j ∈ J1)∑m
i=1 yiaij = cj (j ∈ J2)

yi ≥ 0 (i ∈ I1),

where J1 ∪ J2 = J , J1 ∩ J2 = ∅, I1 ⊆ I, I = {1, . . . ,m} and J = {1, . . . , n}.
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REMARK. The canonical problem (P) and its dual (D) correspond to

J1 = J , J2 = ∅, I2 = I, I1 = ∅.
The standard problem (P∗) and its dual (D∗) correspond to J1 = J ,

J2 = ∅, I1 = I, I2 = ∅. �

THEOREM 2.1.2. (Linear programming duality) The dual of (D◦)

is (P◦)

Proof. The problem (D◦) is equivalent to minimizing (−b) · y subject to
∑m

i=1 yi(−aij) ≥ −cj (j ∈ J1)∑m
i=1 yi(−aij) = −cj (j ∈ J2)

yi ≥ 0 (i ∈ I1).

This is [−AT ,−c,−b, J1, I1]. So duality converts

[A, b, c, I1, J1]︸ ︷︷ ︸
(P◦)

−→ [−AT ,−c,−b, J1, I1]︸ ︷︷ ︸
(D◦)

.

Hence the dual of (D◦) is

[−(−AT )T ,−(−b),−(−c), I1, J1] = [A, b, c, I1, J1]︸ ︷︷ ︸
(P◦)

. �

REMARK. (Changing linear programming problems) By adding

new variables, we can in fact convert a general linear programming problem

(P◦) into the canonical form (P).

Step 1: Define the slack variables

zi =
n∑
j=1

aijxj − bi ≥ 0 (i ∈ I1).

Then (P◦) becomes

(2.3)



∑n
j=1 aijxj − zi = bi (i ∈ I1)∑n
j=1 aijxj = bi (i ∈ I2)

xj ≥ 0 (j ∈ J1)
zi ≥ 0 (i ∈ I1).

Step 2: For j ∈ J2 = J \ J1, we introduce the surplus variables

xj = uj − vj (j ∈ J2)
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where uj ≥ 0, vj ≥ 0. Now replace in (2.3) all occurrences of xj for j ∈ J2
with uj − vj . Thus 

xj ≥ 0 (j ∈ J1)
uj ≥ 0 (j ∈ J2)
vj ≥ 0 (j ∈ J2),

and we now have a problem of the canonical form (P).

As a consequence of these observations, when we study the theory of

linear programming, it is enough to consider the canonical problem (P) and

its dual (D). �

2.1.2. Equilibrium equations.

Recall the primal and dual problems

(P)


min c · x,

subject to

Ax = b, x ≥ 0.

(D)


max b · y,

subject to

AT y ≤ c.

THEOREM 2.1.3 (Equilibrium equations). Suppose x is feasible for

(P) and y is feasible for (D).

Then x and y are optimal if and only if they satisfy the equilibrium

equations

(E)
m∑
i=1

yiaij = cj if xj > 0 (j = 1, . . . , n).

REMARKS. Equivalently, (E) says

m∑
i=1

yiaij < cj implies xj = 0 (j = 1, . . . , n).

The equilibrium equations are sometimes referred to as the comple-

mentary slackness conditions. This means that if the constraint xj ≥ 0 is

slack (that is, if xj > 0), then the complementary constraint
∑m

i=1 yiaij ≤ cj
is tight (that is,

∑m
i=1 yiaij = cj). �

Proof. As before, compute

b · y = Ax · y = x0 ·AT y ≤ c · x.

When do we have equality in the last inequality?
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Note that

x · (AT y − c) =

n∑
j=1

xj
(
(AT y)j − cj

) {= 0 if (E) holds

< 0 if (E) fails,

since (AT y)j =
∑m

i=1 yiaij . Thus b · y = c · x precisely when (E) holds, and

consequently (E) is equivalent to the optimality of both x and y. �

REMARK. A similar result holds for the standard form linear program-

ming problems

(P∗)


min c · x,

subject to

Ax ≥ b, x ≥ 0.

(D∗)


max b · y,

subject to

y ≥ 0, AT y ≤ c.

The equilibrium equations for these problems read

(E∗)

{
(i)

∑m
i=1 yiaij = cj if xj > 0 (j = 1, . . . ,n)

(ii)
∑n

j=1 aijxj = bi if yi > 0 (i = 1, . . . ,m).

So if x, y are feasible for (P∗), (D∗), then x, y are optimal if and only if

(E∗) holds. This is true since then

b · y = Ax · y = x ·AT y = x · c,

the first equality holding according to (ii) of (E∗) and the last according to

(i). �

EXAMPLE. (Continued from page 31) We have x0 = [0 2 3 0]T and y0 =

[−1 1]T . Observe that

AT y0 =


−4

5

2

11

 ≤


1

5

2

13

 .
Then, as predicted by (E), we have (AT y0)j = cj precisely when the corre-

sponding entry of x0 is positive, that is, for j = 2, 3. �

EXAMPLE. Let us use (E∗) to find an optimal solution of
minimize 7x1 − 9x2 − 16x3,

subject to 2 ≤ x1 + 2x2 + 9x3 ≤ 7

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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This has the form (P∗) for

c =

 7

−9

−16

 , A =

[
1 2 9

−1 −2 −9

]
, b =

[
2

−7

]
.

The dual (D∗) is {
maximize b · y

subject to AT y ≤ c, y ≥ 0.

Therefore 
y1 − y2 ≤ 7

2y1 − 2y2 ≤ −9

9y1 − 9y2 ≤ −16.

Consequently, y1−y2 ≤ 7,−9
2 ,−

16
9 and this implies y1−y2 ≤ min{7,−9

2 ,−
16
9 } =

−9
2 . Let us look for y1, y2 with y1 − y2 = −9

2 . Then

b · y = 2y1 − 7y2 = 2y1 − 7

(
y1 +

9

2

)
= −5y1 −

63

2
.

We maximize this expression by taking y1 = 0, y2 = 9
2 . So we guess that

y0 = [0, 92 ]T . This gives b · y0 = −63
2 .

How do we find x0? Since

AT y0 =

1 −1

2 −2

9 −9

[0
9
2

]
=

−9
2

−9

−81
2

 ≤
 7

−9

−16

 ,
it follows from (E∗) that x0 = [0, x2, 0]T . Consequently, c · x0 = −9x2 and

2 ≤ 2x2 ≤ 7. So we select x2 = 7
2 to minimize c · x0 = −63

2 = b · y0. Hence

x0 = [0, 72 , 0]T and y0 = [0, 92 ]T are optimal. �

2.1.3. Basic solutions.

We introduce next the concept of basic solutions to linear programming

problems. These are solutions with the largest numbers of zero entries,

which are consequently the easiest to study.

NOTATION. It is often useful to display the columns of A by writing

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 =
[
a1 a2 · · · an

]︸ ︷︷ ︸
columns

.
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Here

aj =

a1j...
amj


is the j-th column vector of A, and so aj ∈ Rm for j = 1, . . . , n. �

LEMMA 2.1.1. If Ax = b, then b is a linear combination of the columns

of A.

Proof. We can rewrite Ax = b as

x1a
1 + . . .+ xna

n = b,

and this shows b to be a linear combination of the column vectors. �

DEFINITION. We say that x ∈ Rn is a basic solution of Ax = b if the

columns {
aj | xj 6= 0, j = 1, . . . , n

}
are linearly independent in Rm.

Also, we say x = 0 is basic.

In particular, if x ∈ Rn is a basic solution of Ax = b, then x has at most

m non-zero entries. This can be important, since often m � n in linear

programming.

THEOREM 2.1.4. For each b ∈ Rm the linear system of equations

Ax = b

has at most finitely many basic solutions.

Proof. Look at the columns {a1, . . . , an} of A. There are only finitely many

subsets {aj1 , . . . , ajl} ⊆ {a1, . . . , an} which are independent in Rm. Take

such a subset {aj1 , aj2 , . . . , ajl}.
We claim there is at most one solution of Ax = b having the form

x = [0xj1 0xj2 · · ·xjl 0]T . To see this, let x̂ = [0 x̂j1 0 x̂j2 · · · x̂jl 0]T also solve

Ax̂ = b. Then

A(x− x̂) = b− b = 0

and therefore
l∑

k=1

(xjk − x̂jk)ajk = 0.

Since the columns {aj1 , . . . , ajl} are linearly independent, it follows that

xj1 = x̂j1 , . . . , xjl = x̂jl .
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Hence there is at most one basic solution of Ax = b corresponding to each

independent collection of columns.

�

Recall that we sometimes say that x is a feasible solution of (P) if

Ax = b, x ≥ 0. This is just another way of saying that x is feasible.

THEOREM 2.1.5 (Basic solutions).

(i) If there exists a feasible solution of (P), then there exists a basic

feasible solution.

(ii) If there exists an optimal solution of (P), then there exists a basic

optimal solution.

Proof. 1. Select a feasible solution x with fewest number of non-zero com-

ponents. I will show it is a basic feasible solution.

If x = 0, we are done. If not, x = [0xj1 0xj2 · · ·xjl 0]T , with xj1 , . . . , xjl >

0 and

(2.4) Ax =
l∑

k=1

xjka
jk = b.

Suppose x is not basic. Then there exist θj1 , θj2 , . . . , θjl , not all equal to 0,

such that

(2.5)
l∑

k=1

θjka
jk = 0.

This means that Aθ = 0, where θ = [0 θj1 0 · · · θjl 0]T . Then (2.4) and (2.5)

imply for any λ that

l∑
k=1

(xjk − λθjk)ajk = b.

We may assume θjp > 0 for some index jp (if not, multiply θ by −1).

Increase λ from λ = 0 to the first λ∗ > 0 for which at least one of the values

xj1 − λ∗θj1 , . . . , xjl − λ
∗θjl
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equals zero. Since θjp > 0, this must happen at a finite value of λ∗. Then

x∗ =



0

xj1 − λ∗θj1
0
...

xjl − λ∗θjl
0


= x− λ∗θ

satisfies x∗ ≥ 0, Ax∗ = b, and x∗ has at least one fewer non-zero entry than

x. This is a contradiction, and therefore x is indeed a basic feasible solution.

2. Now let x0 be an optimal solution with the fewest number of non-zero

components. I will show that x0 is a basic optimal solution.

Suppose not. Then, as above, x0 = [0, xj1 , 0, . . . , xjl , 0]T with xj1 , . . . , xjl >

0, and
l∑

k=1

xjka
jk = b,

l∑
k=1

θjka
jk = 0

for appropriate θj1 , θj2 , . . . , θjl , not all equal to 0. Select λ∗ as before and

write

x∗0 = x0 − λ∗θ.

Then Ax∗0 = b, x∗0 ≥ 0, and x∗0 has fewer non-zero components than x0.

3. We now claim

(2.6) c · x∗0 = c · x0 = min{c · x|Ax = b, x ≥ 0}.

To prove this, observe first that

(2.7) c · θ = 0;

for otherwise, we could select a small value of λ so that

c · (x0 − λθ) < c · x0

(λ > 0 if c · θ > 0, λ < 0 if c · θ < 0). This is a contradiction since x0 − λθ
is feasible for small |λ|. Thus (2.7) holds and therefore

c · (x∗0 − x0) = −λ∗c · θ = 0.

This proves (2.6).

Thus x∗0 is optimal for (P), but has fewer non-zero components than x0.

And this is a contradiction: x0 is a basic optimal solution.

�



40 2. LINEAR OPTIMIZATION

REMARK. Our discussion of basic solutions leads to the very interesting

realization that although linear programming problems are finite dimen-

sional, with infinitely many feasible solutions, they are in effect finite opti-

mization problems, with only finitely many basic solutions to consider and

only finitely many optimal basic solutions.

The simplex algorithm, discussed next, builds upon this observation. �

2.2. Simplex algorithm

We describe next the simplex algorithm, developed by G. Dantzig. This

algorithm is universally regarded as among the most important from the

20th century: see Cipra [C]. The actions of the simplex algorithm are

somewhat analogous to elementary row operations in linear algebra.

The simplex algorithm comprises two procedures:

Phase I: Find a basic feasible solution of Ax = b, x ≥ 0 (or show

that none exists).

Phase II: Given a basic feasible solution, find a basic optimal

solution (or show that none exists).

2.2.1. Nondegeneracy.

DEFINITION. The nondegeneracy assumptions are that

(i) n > m

(ii) the rows of A are linearly independent (and thus A has m columns

which are independent)

(iii) b cannot be written as a linear combination of fewer than m

columns of A.

REMARKS.

• Assumption (i) implies that there are more unknowns (x1, . . . , xn) than

the m linear equality constraints in the linear system Ax = b.

• Assumption (ii) means

rank(A) = m = dim(column space) = dim(row space).

• Assumption (iii) says that if Ax = b, then x has at least m non-zero

entries. �

REMARK. Under the nondegeneracy assumptions, any basic, feasible so-

lution of Ax = b, x ≥ 0 has precisely m non-zero entries. The next assser-

tion shows that the converse is true as well. �
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LEMMA 2.2.1 (On nondegeneracy). Assume the nondegeneracy con-

ditions (i)-(iii) hold.

If Ax = b, x ≥ 0 and x has precisely m non-zero entries, then x is a basic

feasible solution.

Proof. Let x = [0xj1 0 . . . xjm . . . 0]T , where xj1 , . . . , xjm > 0, and write

B = {j1, . . . , jm}. We will show that the columns {aj1 , . . . , ajm} are inde-

pendent.

We know ∑
j∈B

xja
j = b.

If the {aj1 , . . . , ajm} were dependent, we could write some column as a linear

combination of the others. That is, for some index jk we have

ajk =
∑
j∈B
j 6=jk

yja
j .

Then

b = xjka
jk +

∑
j∈B
j 6=jk

xja
j = xjk

∑
j∈B
j 6=jk

yja
j +

∑
j∈B
j 6=jk

xja
j =

∑
j∈B
j 6=jk

(xjkyj + xj)a
j .

Thus b is a linear combination of fewer than m columns of A, a contradiction

to the nondegeneracy requirement (iii).

�

2.2.2. Phase II.

We discuss Phase II before Phase I (as the latter, somewhat surprisingly,

will depend upon the former). The goal of Phase II is, given a basic feasible

solution x, to find a basic optimal solution x0, or show none exists. For this,

we assume the nondegeneracy conditions (i), (ii), (iii).

So we are given

x =



0

xj1
...

xj2
...

0
...

xjm
0
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where xj1 , . . . , xjm > 0 are the m non-zero entries of x. We also have

(2.8) Ax = b.

STEP 1: Use the dual problem to check for optimality.

We have a basic feasible solution x, and need to check if it is optimal or

not.

DEFINITIONS.

(i) Write B = {j | xj > 0} = {j1, . . . , jm}. We call {aj | j ∈ B} the

basis corresponding to x.

(ii) Define also the m×m matrix

M =
[
aj1 aj2 . . . ajm

]
m×m ,

called the corresponding basis matrix.

(iii) If c =
[
c1 . . . cn

]T
, define

ĉ =

 cj1...
cjm

 ∈ Rm.

The m ×m matrix M is invertible, since its columns are independent.

Thus there exists a unique y ∈ Rm solving

(2.9) MT y = ĉ.

Then

y =
(
MT

)−1
ĉ =

(
M−1

)T
ĉ.

Recall next that y is feasible for (D) if

(2.10) AT y ≤ c;

this means

(2.11) aj · y ≤ cj (j = 1, . . . , n).

Note carefully: (2.10) may, or may not, be valid. But if so, we are done:

LEMMA 2.2.2. If (2.10) holds, then x is optimal for (P).

Proof. The equilibrium equations (E) say

aj · y =
m∑
i=1

yiaij = cj if xj > 0, that is, if j ∈ B.
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Now M =
[
aj1 . . . ajm

]︸ ︷︷ ︸
columns

, and so

MT =


(aj1)T

...

(ajm)T


 rows .

But (2.9) says MT y = ĉ, which means that

aj · y = cj for j ∈ B.

These are precisely the equilibrium equations (E). So if y is feasible for

(D), it follows that x is optimal for (P), y is optimal for (D). �

Therefore we have two possibilities:

Case A1: y defined by (2.9) satisfies (2.10). Then STOP: x0 = x is

optimal for (P).

Case A2: y defined by (2.9) does not satisfy (2.10). GO TO STEP 2.

STEP 2: Use a “wrong way” inequality to improve x.

When (2.10) fails, there exists some index s ∈ {1, . . . , n} \B such that

(2.12) as · y > cs.︸ ︷︷ ︸
“wrong way” inequality

The key idea of the simplex algorithm is to use this fact to change the basis

{aj | j ∈ B}, thereby constructing a new basic feasible solution x∗ with a

lower cost c · x∗. To do this, we first find

t =

 tj1...
tjm

 ∈ Rm

so that

(2.13) Mt = as.

Since M is invertible, (2.13) has a unique solution. Then

as =
∑
j∈B

tja
j ,

and consequently for all λ, we have

(2.14) λas +
∑
j∈B

(xj − λtj)aj = b.
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Now define

x̂ =



0

xj1 − λtj1
...

xj2 − λtj2
...

λ
...

xjm − λtjm
0


∈ Rn.

Here λ is in the s-th slot. According to (2.14),

Ax̂ = b

and

x̂ ≥ 0 (for small λ > 0).

So x̂ is feasible for (P) for small λ > 0 (but has m+ 1 non-zero entries, and

consequently is not basic).

How does replacing x by x̂ affect the cost? The old cost is

c · x =
∑
j∈B

xjcj

and the new cost is

c · x̂ = λcs +
∑
j∈B

(xj − λtj)cj .

The change in cost is therefore

(2.15) c · x̂− c · x = λcs −
∑
j∈B

λtjcj = λ(cs − zs)

for

zs =
∑
j∈B

tjcj = ĉ · t.

We next calculate using (2.9) that

zs = ĉ · t = ĉ · (M−1as) =
(
M−1

)T
ĉ · as = y · as.

We see that therefore the “wrong way” inequality (2.12) is equivalent to

(2.16) zs > cs.

It follows that

c · x̂ < c · x
for λ > 0. Consequently, we lower the cost by shifting to x̂ from x.
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STEP 3: Change the basis, lower the cost

There are two possibilities as to how much we can lower the cost by

increasing λ:

Case B1: tj ≤ 0 for all j ∈ B.

Then x̂j = xj − λtj ≥ xj > 0 for j ∈ B and so x̂ is feasible for all λ > 0.

Thus (2.15) says

c · x̂ = c · x+ λ(cs − zs︸ ︷︷ ︸
<0

)→ −∞

as λ→∞. So we have learned that

inf{c · x | Ax = b, x ≥ 0} = −∞

and therefore STOP: (P) has no solution.

Case B2: tj > 0 for at least one index j ∈ B.

We increase λ, starting at 0 and stopping when λ = λ∗ > 0 and x̂jk =

xjk − λ∗tjk = 0 for some index jk ∈ B. Define

x∗ :=



0

xj1 − λ∗tj1
...

0
...

λ∗

...

xjm − λ∗tjm
0



← jk-th slot

← s-th slot

Then x∗ has no more than m non-zero entries; and, since Ax∗ = b, the non-

degeneracy conditions say that x∗ has precisely m non-zero entries. Accord-

ing to Lemma 2.2.1, x∗ is therefore a basic feasible solution. Furthermore,

c · x∗ < c · x.

Now define the new basis

B∗ = {j1, . . . , jm}︸ ︷︷ ︸
B

\{jk} ∪ {s},

by removing the index jk and adding the index s. Then GO TO STEP 1,

with x∗ replacing x and B∗ replacing B.
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Each time we cycle through STEP 1 → STEP 3, the cost strictly de-

creases. Thus the same collection of basis vectors B will never repeat. Hence

the simplex algorithm terminates in a finite number of steps. This can only

occur when Case A1 hapens (showing we have reached an optimal solution)

or Case B1 happens (showing that none exists). �

As a bonus, we can extract from our reasoning above the following

THEOREM 2.2.1 (Simplex algorithm finds optimal solutions). As-

sume the nondegeneracy conditions (i)-(iii) hold, and that there exist feasible

x for (P), feasible y for (D).

Then the simplex algorithm terminates in finitely many steps, and pro-

duces a basic optimal x0 for (P) and an basic optimal y0 for (D).

Proof. If y is feasible for (D),

inf{c · x | Ax = b, x ≥ 0} ≥ b · y > −∞

and so Case B1 cannot occur. Consequently the simplex algorithm termi-

nates at an optimal x0 for (P). Furthermore y0 = y (defined by (2.9)) is

optimal for (D). �

EXAMPLE. We use the simplex algorithm to solve

(P)


min 3x1 + 3x2 + 2x3,

subject to[
1 2 3

4 5 6

]
x =

[
3

9

]
, x ≥ 0.

Here c = [3 3 2]T , b = [3 9]T .

First feasible solution: For the given basic feasible solution x = [1 1 0]T

we have B = {1, 2}. Then j1 = 1, j2 = 2,

ĉ =

[
3

3

]
, M =

[
1 2

4 5

]
, M−1 =

1

3

[
−5 2

4 −1

]
.

(Recall that the inverse of

[
a b

c d

]
is 1

ad−bc

[
d −b
−c a

]
.)

We must check for the “wrong way” inequality (for s = 3). To do this,

we first find t solving Mt = a3. Then

t = M−1a3 =
1

3

[
−5 2

4 −1

] [
3

6

]
=

[
−1

2

]
.
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We compute next that

z3 = ĉ · t = 3,

and note that c3 = 2. Since z3 > c3, the wrong way inequality does indeed

hold for s = 3.

So we must bring a3 into the basis and remove one of the current basis

vectors (or else show the infimum of the cost is −∞). We have

x̂ =

x1 − λt1x2 − λt2
λ

 =

 1 + λ

1− 2λ

λ

 .
We increase λ from 0 to λ∗, when one of the first two entries of x̂ hits 0.

This happens for λ∗ = 1
2 .

Our new basic feasible solution is therefore x∗ = [32 0 1
2 ]T . Let us check

that

old cost = c · x = 6, new cost = c · x∗ = 11
6 ;

and so the cost dropped by 1
2 .

Second feasible solution: We now repeat the process starting with the

new feasible solution x = [32 0 1
2 ]T and B = {1, 3}. Then

M =

[
1 3

4 6

]
, M−1 =

1

6

[
−6 3

4 −1

]
, ĉ =

[
3

2

]
.

Solving Mt = a2 gives t = M−1a2 = [12
1
2 ]T . So z2 = ĉ · t = 5

2 and c2 = 3. It

is now not true that z2 > c2, and thus the wrong way inequality is false.

Therefore x0 = [32 0 1
2 ]T is optimal for (P). Furthermore

y0 = (M−1)T ĉ =
1

6

[
−6 4

3 −1

] [
3

2

]
=

1

6

[
−10

7

]
is optimal for (D). We check this conclusion by noting y0 ·b = 11

2 = x0 ·c. �

EXAMPLE. Use the simplex algorithm to solve the problem

(P)


min x1 + x2 − 3x3,

subject to[
1 2 −3

4 5 −9

]
x =

[
4

13

]
, x ≥ 0.

First feasible solution: We employ Phase II, starting with basic feasible

solution x = [2 1 0]T . Then the basis is B = {1, 2}, so that j1 = 1, j2 = 2,

and

M =

[
1 2

4 5

]
, M−1 =

1

3

[
−5 2

4 −1

]
.
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Next, we check for “wrong way” inequality (for all indices in {1, . . . , n}\
B). We just need to consider s = 3. We solve Mt = a3, by putting

t = M−1a3 =
1

3

[
−5 2

4 −1

] [
−3

−9

]
=

[
−1

−1

]
.

We have ĉ = [1 1]T and therefore

z3 = ĉ · t = −2.

Since c3 = −3, we see that z3 > c3: the wrong way inequality (2.16) does

indeed hold for s = 3.

So we must bring a3 into the basis, and remove one of the current basis

vectors (or else show the infimum of the cost is −∞). We have

x̂ =

x1 − λt1x2 − λt2
λ

 =

2 + λ

1 + λ

λ


and c · x̂ = 3− λ→ −∞ as λ→∞. Hence

inf{c · x | Ax = b, x ≥ 0} = −∞,

and we see that therefore (P) does not have an optimal solution.

We also know from our general theory that for this example there must

be no feasible y for (D). This is easy to check directly. �

2.2.3. Phase I.

We now explain how to carry Phase I of the simplex algorithm.

REMARK. But to do so, we need to modify the third nondegeneracy

condition, to become

(iii)′ b cannot be written as a linear combination of

fewer than m columns of Ã = [A I],

where I is the m×m identity matrix. Observe that (iii)′ implies bi 6= 0 for

i = 1, . . . ,m. �

We assume for this section that the nondegeneracy conditions (i), (ii),

(iii)′ hold. The goal of Phase I is to find x ≥ 0 solving Ax = b, that is,

n∑
j=1

aijxj = bi (i = 1, . . . ,m).

We may assume bi > 0 for i = 1, . . . ,m: if not, multiply the i-th equation

by −1.
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Consider now the modified problem

(P̃)


min z1 + . . . zm, subject to∑n
j=1 aijxj + zi = bi (i = 1, . . . ,m)

x ≥ 0, z ≥ 0.

This has the form {
min c̃ · x̃,
subject to x̃ ≥ 0, Ãx̃ = b̃

for

x̃ =

[
x

z

]
∈ Rn+m, Ã =

[
A I

]
m×(n+m)

, b̃ = b, c̃ =



0
...

0

1
...

1



n

m

.

Since each bi > 0, a basic feasible solution of (P̃) is

x̃ = [0 · · · 0 b1 · · · bm]T .

Now apply Phase II to (P̃): we either produce a basic optimal solution x̃0
of (P̃) or learn that none exists. Since c̃ · x̃ ≥ 0 for all feasible x̃, the latter

cannot occur, as we will later see from the Duality Theorem 2.3.3 in the

next section. Hence Phase II provides us with a basic optimal x̃0 for (P̃),

and we write

x̃0 =

[
x

z

]
with x ∈ Rn, z ∈ Rm.

There are now two possibilities to consider:

Case 1:
∑m

i=1 zi = 0. Then z1 = . . . = zm = 0, and therefore Ãx̃0 = b̃

implies

Ax = b, x ≥ 0.

So we have found a basic feasible solution x for (P).

Case 2:
∑m

i=1 zi > 0. In this situation (P) does not have any feasible

solutions x. This is so, since if Ax = b, x ≥ 0, then

x̃0 =

[
x

0

]
would be optimal for (P̃), giving the cost c̃ · x̃ =

∑m
i=1 zi = 0. �
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REMARKS. Our discussion of Phases I, II of the simplex algorithm il-

lustrates how some basic mathematical ideas (concerning the dual problem

and basic solutions) can be cleverly fashioned into a powerful computational

procedure.

Franklin [F1], Bertsekas–Tsitsiklis [B-T] and many other texts show

how to implement the algorithm for a moderate number of variables on a

spreadsheet, the various steps appearing as elementary row operations. Cur-

rent linear programming applications can entail hundreds of thousands of

variables and often require different, more modern algorithms such as inte-

rior point methods: see Boyd–Vandenberghe [B-V] or Bertsekas–Tsitsiklis

[B-T]. �

2.3. Duality Theorem

Next we return to theory and provide an analysis of the solvability of linear

programming problems in standard form:

(P ∗)


min c · x,

subject to

Ax ≥ b, x ≥ 0.

(D∗)


max b · y,

subject to

AT y ≤ c, y ≥ 0.

We no longer need the nondegeneracy conditions from the previous sec-

tion, but we do require this important assertion:

THEOREM 2.3.1 (Variant of Farkas alternative). Either

(i)∗ Ax ≤ b, x ≥ 0 has a solution, or

(ii)∗ AT y ≥ 0, y · b < 0, y ≥ 0 has a solution,

but not both.

We will prove this later (on page 89), but for now ask readers just to

accept it. Following is a major application, the most important theoretical

assertion in linear programming, first proved by von Neumann and Gale–

Kuhn–Tucker.

THEOREM 2.3.2 (Duality Theorem for standard form problems).

Precisely one of the following occurs:

(I) Both (P ∗) and (D∗) have feasible solutions. In this case, both

(P ∗) and (D∗) have optimal solutions and

min{c · x | Ax ≥ b, x ≥ 0} = max{b · y | AT y ≤ c, y ≥ 0}.
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(II) There are feasible solutions for (D∗), but not for (P ∗). Then

sup{b · y | AT y ≤ c, y ≥ 0} =∞.

(III) There are feasible solutions for (P ∗), but not for (D∗). Then

inf{c · x | Ax ≥ b, x ≥ 0} = −∞.

(IV) Neither (P ∗) nor (D∗) has feasible solutions.

INTERPRETATION. Statement I says that there is no duality gap for

linear programming. �

Proof. We introduce the compound matrix

Â =

−A 0

0 AT

cT −bT


(m+n+1)×(n+m)

and define also

x̂ =

[
x

y

]
, b̂ =

−bc
0

 , ŷ =

vu
λ

 .
Here x, u ∈ Rn, b, v ∈ Rm, λ ∈ R. The Farkas alternative (Theorem 2.3.1)

says that either

(i)∗ Âx̂ ≤ b̂, x̂ ≥ 0 has a solution

or

(ii)∗ ÂT ŷ ≥ 0, ŷ · b̂ < 0, ŷ ≥ 0 has a solution,

but not both.

2. If (i)∗ holds, we can solve Âx̂ ≤ b̂, x̂ ≥ 0 and therefore there exist

x ∈ Rn and y ∈ Rm so that x ≥ 0, y ≥ 0 and−A 0

0 AT

cT −bT

[x
y

]
≤

−bc
0

 .
Thus 

−Ax ≤ −b, x ≥ 0

AT y ≤ c, y ≥ 0

c · x− b · y ≤ 0.
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Then Ax ≥ b and so also b · y ≤ Ax · y = x ·AT y ≤ x · c. Hence

(i)∗


Ax ≥ b, x ≥ 0

AT y ≤ c, y ≥ 0

c · x = b · y.

Consequently, x is feasible for (P ∗) and y is feasible for (D∗). Furthermore,

according to Theorem 2.1.1 last line of (i)∗ implies that x is optimal for (P ∗)

and y is optimal for (D∗). This gives statement I of the Duality Theorem.

3. If instead (ii)∗ holds, then we can solve ÂT ŷ ≥ 0, ŷ · b̂ < 0, ŷ ≥ 0. This

means there exist v ∈ Rm, u ∈ Rn and λ ∈ R so that u, v, λ ≥ 0,[
−AT 0 c

0 A −b

]vu
λ

 ≥
0

0

0

 ,
and

ŷ · b̂ = −b · v + c · u < 0.

This is all equivalent to 
AT v ≤ λc, v, λ ≥ 0

Au ≥ λb, u ≥ 0

c · u < b · v.
We assert next that

λ = 0.

To see this, observe that

λ(v · b) ≤ v ·Au = AT v · u ≤ λ(c · u).

This contradicts c ·u < b · v, unless λ ≤ 0. Since λ ≥ 0, we must have λ = 0.

Therefore we have

(ii)∗


AT v ≤ 0, v ≥ 0

Au ≥ 0, u ≥ 0

c · u < b · v.

The existence of u, v satisfying (ii)∗ will lead us to statements II-IV of

the Duality Theorem. We need to investigate various possibilities as to the

sign of a certain term.

4. Case A: c · u < 0.

In this situation, I claim that (D∗) has no feasible solutions. To see this,

suppose AT y ≤ c, y ≥ 0. Then (ii)∗ implies

0 ≤ y ·Au = AT y · u ≤ c · u < 0,
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and this is a contradiction.

If in addition (P ∗) has no feasible solution, we have statement IV of the

Duality Theorem. If on the other hand (P ∗) does have a feasible solution

solving Ax ≥ b, x ≥ 0, then for all µ ≥ 0, (ii)∗ gives{
A(x+ µu) = Ax+ µAu ≥ b
x+ µu ≥ 0.

Thus x+ µu is also feasible for (P ∗). But then

c · (x+ µu) = c · x+ µ(c · u)→ −∞ as µ→∞,

since c · u < 0. This gives statement III of the Duality Theorem.

5. Case B: c · u ≥ 0

Then (ii)∗ implies

b · v > c · u ≥ 0.

I claim that now (P ∗) has no feasible solutions. To see this, assume Ax ≥ b,
x ≥ 0. It would then follow from (ii)∗ that

0 ≥ x ·AT v = Ax · v ≥ b · v > 0,

a contradiction. If also (D∗) has no feasible solution, we have statement IV.

If (D∗) does have a feasible solution y satisfying AT y ≤ c, y ≥ 0, then

for µ ≥ 0 the inequalities (ii)∗ give{
AT (y + µv) = AT y + µAT v ≤ c
y + µv ≥ 0.

Hence y + µv is also feasible for (D∗). And then

b · (y + µv) = b · y + µb · v →∞ as µ→∞,

since b · v > 0. This establishes the remaining statement II of the Duality

Theorem. �

Let us now return to the canonical forms of our primal and dual prob-

lems:

(P )


min c · x,

subject to

Ax = b, x ≥ 0.

(D)


max b · y,

subject to

AT y ≤ c.
Since we can use slack and surplus variables to convert between these and

the standard form problems (P ∗), (D∗), we likewise have a duality assertion

for the canonical problems:
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THEOREM 2.3.3 (Duality Theorem for canonical form problems).

Precisely one of the following occurs:

(I) Both (P ) and (D) have feasible solutions. In this case, both (P )

and (D) have optimal solutions and

min{c · x | Ax = b, x ≥ 0} = max{b · y | AT y ≤ c}.

(II) There are feasible solutions for (D), but not for (P ). Then

sup{b · y | AT y ≤ c} =∞.

(III) There are feasible solutions for (P ), but not for (D). Then

inf{c · x | Ax = b, x ≥ 0} = −∞.

(IV) Neither (P ) nor (D) has feasible solutions.

2.4. Applications

We discuss in the subsequent sections several interesting applications and

extensions of linear programming.

2.4.1. Multiobjective linear programming.

Multiobjective optimization problems ask us to simultaneously mini-

mize several cost functions at once, a task that is generally undefined and

therefore impossible. Nevertheless, we will see that linear programming can

sometimes let us “fairly” combine the individual cost functions into a single

cost.

To be specific, assume c1, . . . , cN ∈ Rn and suppose we wish to find

x ∈ Rn to somehow{
minimize c1 · x, c2 · x, . . . , cN · x
subject to Ax = b, x ≥ 0.

ECONOMIC INTERPRETATION. Such a problem arises when a cen-

tral authority must allocate, subject to constraints, resources to N different

groups of clients, each of which wants to maximize their own payoff func-

tions. Cohon’s book [Co] on multiobjective programming and planning

discusses many interesting applications. �
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NOTATION. We introduce the N × n matrix

C =

 (c1)T

...

(cN )T

 ,
where each entry is a row vector.

Then we can symbolically rewrite the above as the multiobjective

linear programming problem

(M)

{
minimize Cx, subject to

Ax = b, x ≥ 0.

But note carefully that this does not have really a meaning, as there

is no obvious mathematical way to define the “minimum” of an RN -valued

function for N > 1. We therefore borrow a concept from mathematical

economics:

DEFINITION. A feasible x0 is called a (Pareto) efficient solution of

(M) if there does not exist another feasible x such that

(2.17) Cx ≤ Cx0, Cx 6= Cx0.

INTERPRETATION. The idea is that if we have an efficient solution x0,

then there is no way to shift to another feasible solution, so that (i) at least

one of the costs drops and (ii) none of the others goes up. In this limited

sense, x0 provides a “fair” solution to (M). �

The key insight is that we can use linear programming to characterize

efficient solutions:

THEOREM 2.4.1. (Weights and efficient solutions) A vector x0 is

an efficient solution of (M) if and only if there exists w ∈ RN , with

w > 0,

such that x0 is an optimal solution of

(P )

{
minimize c · x, subject to

Ax = b, x ≥ 0

for

c = CTw .
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INTERPRETATION. Since

c · x = (CTw) · x = w · Cx =
N∑
i=1

wi(c
i · x),

we can think of the positive entries of w = [w1 · · ·wN ]T as weights that

allow us to combine the different costs ci ·x (i = 1, . . . , N) into a single cost

c · x. Each individual cost is “fairly weighted”, at least in the sense that

optimal solutions x0 of (P) are Pareto efficient for (M).

Note also that the theorem implies there are typically many efficient

solutions to (M), since for each vector of weights w > 0 we can look for a

corresponding solution of (P). �

Proof. 1. Suppose x0 is optimal for (P), where c = CTw for some vector

of weights w > 0. If x0 is not efficient for (M), there exists a feasible x with

Cx ≤ Cx0, Cx 6= Cx0.

Therefore w · Cx < w · Cx0, since w > 0, and consequently

c · x = CTw · x = w · Cx < w · Cx0 = CTw · x0 = c · x0.

This is a contradiction, since x0 is optimal for (P).

2. Now suppose conversely that x0 is efficient solution of (M). We want

to find weights w0 = [w1 · · ·wN ]T > 0 such that x0 is optimal for the linear

programming problem (P) with c = CTw0.

We introduce the new linear programming problem of finding

(2.18) x̃ =

[
x

z

]
for x ∈ Rn, z ∈ RN , to{

minimize −
∑N

i=1 zi, subject to

Ax = b, Cx+ z = Cx0, x ≥ 0, z ≥ 0.

This has the form

(P̃)

{
min c̃ · x̃, subject to

Ãx̃ = b̃, x̃ ≥ 0,

where

Ã =

[
A 0

C I

]
, b̃ =

[
b

Cx0

]
, c̃ =

[
0

−e

]
for e = [1 · · · 1]T ∈ RN .
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One feasible solution is

(2.19) x̃0 =

[
x0
0

]
,

and I claim that x̃0 is in fact optimal for (P̃). To see this, suppose not. Then

there would exist some other feasible x̃ of the form (2.18) with
∑N

i=1 zi > 0.

But then Cx ≤ Cx0, Cx 6= Cx0 and so x0 would not be efficient for (M).

3. The dual problem to (P̃) is

(D̃)

{
maximize b̃ · ỹ, subject to

ÃT ỹ ≤ c̃,

where

ỹ =

[
y

−w

]
for y ∈ Rm, w ∈ RN . The constraints say that[

AT CT

0 I

]
︸ ︷︷ ︸

ÃT

[
y

−w

]
︸ ︷︷ ︸

ỹ

≤
[

0

−e

]
︸ ︷︷ ︸
c̃

and therefore {
AT y ≤ CTw
0 < e ≤ w.

Since (P̃) has an optimal solution given by (2.19), Statement I of the

Duality Theorem 2.3.2 implies that (D̃) likewise has an optimal solution

ỹ0 =

[
y0
−w0

]
with ỹ0 · b̃ = x̃0 · c̃ = 0. Therefore b · y0 − w0 · Cx0 = 0. Consequently,

Ax0 = b, x0 ≥ 0, AT y0 ≤ c = CTw0

and

b · y0 = w0 · Cx0 = (CTw0) · x0 = c · x0.
Therefore x0 is optimal for (P) with c = CTw0, and the entries of w0 > 0

give the desired weights. �

REMARK. The second part of the proof illustrates very well the mathe-

matical principle that the dual problem often contains valuable information,

in this case providing the weights corresponding to an efficient solution x0.

It is remarkable that our knowing just that no feasible x satisfies (2.17) is

enough for this. �
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2.4.2. Two-person, zero-sum matrix games.

In a two-person, zero-sum game, we have two participants: player I

(who wants to maximize some payoff) and player II (who wants to minimize

this payoff). Each player selects his/her strategy without knowing what the

other will do.

For a matrix game, the payoff is determined by a given m × n payoff

matrix A:

player I selects row





a11 . . . . . . a1n
. . .

... aij
...

. . .

am1 . . . . . . amn


︸ ︷︷ ︸

player II selects column

Player I selects a row index i, i ∈ {1, . . . ,m}, and player II selects a

column index j, j ∈ {1, . . . , n}. The payoff to player I is aij and the loss

to player II is aij .

What are optimal strategies for the players?

DEFINITION. The (k, l)-th entry akl of the matrix A is a saddle point

if

(2.20) max
1≤i≤m

ail = akl = min
1≤j≤n

akj .

Equivalently, akl is a saddle point if

(2.21) ail ≤ akl ≤ akj
for all i = 1, . . . ,m, j = 1, . . . , n.

INTERPRETATION. If there exists a saddle point akl, then

• player I should always select i = k;

• player II should always select j = l.

These are called pure strategies. These choices are optimal in the sense

that I’s payoff is then at least akl, regardless of what II does. Likewise, II’s

loss is at most akl, irrespective of what I does. We say that then the game

has value

ω = akl.

�
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So, if the matrix A has a saddle point, our matrix game is pretty simple.

But when do saddle points exist?

THEOREM 2.4.2 (Minimax and saddle points). The matrix A has a

saddle point if and only if the minimax condition

(2.22) min
1≤j≤n

max
1≤i≤m

aij = max
1≤i≤m

min
1≤j≤n

aij

holds.

REMARK. When (2.22) is valid, we will as above write

ω = min
1≤j≤n

max
1≤i≤m

aij = max
1≤i≤m

min
1≤j≤n

aij .

It follows that if A has more than one saddle point, they all give the same

value ω. �

Proof. 1. First, we show that for all matrices A

(2.23) max
1≤i≤m

min
1≤j≤n

aij ≤ min
1≤j≤n

max
1≤i≤m

aij .

To see this, observe for each i and j that aij ≤ maxr arj . Thus

min
j
aij ≤ min

j
max
r
arj .

This holds for all i and so (2.23) follows.

2. Now suppose akl is a saddle point, so that (2.20) holds. Then

min
j

max
i
aij ≤ max

i
ail = akl

max
i

min
j
aij ≥ min

j
akj = akl.

Consequently

min
j

max
i
aij ≤ max

i
min
j
aij .

This is the reverse inequality of (2.23), and therefore (2.22) is valid.

3. Next, assume (2.22) holds, so that

min
j

max
i
aij = max

i
min
j
aij .

By selecting a value of j = l that gives the min on the left and selecting a

value of i = k that gives the max on the right, we get

max
i
ail = min

j
akj .

Then

akl ≤ max
i
ail = min

j
akj ≤ akl;
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and hence we must have equality. Consequently

max
i
ail = akl = min

j
akj .

�

EXAMPLE. For the simple matrix

A =

[
1 −1

−1 1

]
we have

max
i

min
j
aij = −1, min

j
max
i
aij = 1.

Therefore the minimax condition fails (2.22) and hence A does not have a

saddle point. �

In order to find optimal strategies even when A does not have a saddle

point, we need to expand our notion of what options are available to our

players. This we do by introducing “mixed strategies”.

DEFINITION. The collection of mixed strategies for Player I is

P =

{
p ∈ Rm | pi ≥ 0 (i = 1, . . . ,m),

m∑
i=1

pi = 1

}
and the collection of mixed strategies for Player II is

Q =

q ∈ Rn | qj ≥ 0 (j = 1, . . . , n),

n∑
j=1

qj = 1

 .

DEFINITION. Suppose now I selects a vector p ∈ P and II selects a

vector q ∈ Q. The payoff to Player I is

p ·Aq =
∑
i,j

piaijqj ,

which is also the loss to Player II.

PROBABILISTIC INTERPRETATION. As in our earlier Section

1.4.2, we can interpret P as the collection of probability distributions on

the integers {1, . . . ,m} and Q as the collection of probability distributions

on the integers {1, . . . , n}. Now imagine that our matrix game is played

repeatedly. When Player I follows the mixed strategy p, each time he inde-

pendently selects the row i with probability pi; and when Player II follows

the mixed strategy q, she independently selects the column j with proba-

bility qj . The payoff p · Aq is then the expected outcome of these repeated

games, averaged over many trials. �
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DEFINITIONS. (i) We call (p0, q0) a (mixed strategy) saddle point

if

(S) max
p∈P
{p ·Aq0} = p0 · (Aq0) = min

q∈Q
{p0 ·Aq}.

(ii) If (p0, q0) is a mixed strategy saddle point, we call

ω = p0 ·Aq0
the value of the game.

NOTATION. We write

p0 = [p01, . . . , p
0
m]T , q0 = [q01, . . . , q

0
n]T .

LEMMA 2.4.1. The point (p0, q0) is a saddle point if and only if there

exists ω ∈ R such that

(2.24)

n∑
j=1

aijq
0
j ≤ ω ≤

m∑
i=1

p0i aij (i = 1, . . . ,m, j = 1, . . . , n).

Proof. 1. If (S) holds, let us define ω = p0 · Aq0. Then by taking q =

[0 · · · 1 · · · 0]T , with the 1 in the j-th slot, we see that

ω ≤
m∑
i=1

p0i aij .

We similarly deduce that

ω ≥
n∑
j=1

aijq
0
j .

This gives (2.24).

2. Now assume (2.24) holds. We multiply the first inequality by pi ≥ 0

and sum, and multiply the second inequality by qj ≥ 0 and sum. This gives

p ·Aq0 ≤ ω ≤ p0 ·Aq.

Hence

p0 ·Aq0 ≤ max
p∈P

p ·Aq0 ≤ ω ≤ min
q∈Q

p0 ·Aq ≤ p0 ·Aq0.

The condition (S) follows. �

LEMMA 2.4.2. The value ω of a game, if it exists, is unique.

Proof. Suppose also ω′ = p′ ·Aq′. Then according to (2.24),∑
j

aijq
′
j ≤ ω′ ≤

∑
i

p′iaij .
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Therefore

ω ≤
∑
i,j

piaijq
′
j︸ ︷︷ ︸

p·Aq′

≤ ω′ ≤
∑
i,j

p′iaijqj︸ ︷︷ ︸
p′·Aq

≤ ω.

�

A matrix A may fail to have a saddle point, but there always exist mixed

strategy saddle points:

THEOREM 2.4.3 (Mixed strategy saddle points from linear pro-

gramming). Let A be an m× n matrix.

Then there exists a (mixed strategy) saddle point (p0, q0).

REMARK. The value ω = p0 ·Aq0 is unique, but mixed strategies (p0, q0)

giving the value ω need not be unique. �

Proof. 1. We may assume aij > 0. If not, add a large constant C to

each entry of A, getting a new matrix Ã. Compute ω̃ for Ã as below; then

ω = ω̃ − C is the value for A.

2. We will find p0, q0, ω > 0 solving (2.24). Define ui = pi
ω (i = 1, . . . ,m)

and vj =
qj
ω (j = 1, . . . , n); so that

p = ωu, q = ωv.

Then (2.24) holds if and only if

∑m
i=1 uiaij ≥ 1∑n
j=1 aijvj ≤ 1∑
i ui =

∑
j vj = 1

ω

u, v ≥ 0.

Let c = [1 · · · 1]T ∈ Rm, b = [1 · · · 1]T ∈ Rn. We introduce the dual

standard linear programming problems

(P∗) min c · u, subject to ATu ≥ b, u ≥ 0

(D∗) max b · v, subject to Av ≤ c, v ≥ 0.

3. Note that u = [MM · · · M ]T is feasible for (P∗) if M > 1 is large

enough (since all the entries of the matrix A are positive) and v = [0 0 · · · 0]T

is feasible for (D∗). We are thus in Statement I of the Duality Theorem.

Hence there exist optimal u0 for (P∗) and v0 for (D∗) with u0 6= 0 and

u0 · c = v0 · b.
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This says ∑
i

u0i =
∑
j

v0j .

Define

ω =
1∑
i u

0
i

=
1∑
j v

0
j

, p0 = ωu0, q0 = ωv0.

Then p0 ∈ P, q0 ∈ Q and p0, q0, ω solve (2.24). �

We could also invoke the general Minimax Theorem 5.5.1, which we will

establish later, for a completely different proof. But the linear programming

approach has the advantage that it also provides ways to compute mixed

strategy saddle points:

EXAMPLE. Find optimal mixed strategies p0, q0 for the matrix

A =

[
5 4 2

2 1 6

]
.

Here m = 3, n = 2. Set b = [1 1 1]T , c = [1 1]T . Our linear programming

problem is

(P∗)

{
minu1 + u2

subject to u ≥ 0, ATu ≥ b.
The constraints therefore say5 2

4 1

2 6

[u1
u2

]
=

5u1 + 2u2
4u1 + u2
2u1 + 6u2

 ≥
1

1

1

 .
Let us guess that we have equalities for the second and third equation, so

that 4u1 + u2 = 1 and 2u1 + 6u2 = 1. Then 5u1 + 2u2 ≥ 1. The solution is[
u1
u2

]
=

[
5
22
2
22

]
.

The corresponding dual problem is

(D∗)

{
max v1 + v2 + v3

subject to v ≥ 0, Av ≤ c.

Hence [
5 4 2

2 1 6

]v1v2
v3

 ≤ [1
1

]
.
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Since 5u1 + 2u2 > 1, we must have v1 = 0, according to the equilibrium

equations. Hence [
4 2

1 6

] [
v2
v3

]
=

[
1

1

]
,

and so v1v2
v3

 =

 0
4
22
3
22

 .
Thus u1 + u2 = v1 + v2 + v3 = 7

22 , and then

ω =
1∑
i ui

=
1∑
j vj

=
22

7
,

p0 = ωu =

[
5
7
2
7

]
, q0 = ωv =

0
4
7
3
7

 .
�

2.4.3. Network flows.

Our next example illustrates that sometimes we can exploit particular

features of a linear programming problem to get useful information directly,

without employing the full power of our general theory.

DEFINITION. A flow network is a pair (N, k), where

(i) N = {s, a, b, . . . , s′} is a finite set of points, called nodes. We call

s the source and s′ the sink.

(ii) k : N ×N → [0,∞) is a function such that k(x, x) = 0 and

(2.25) k(x, y) = k(y, x) (x, y ∈ N).

We interpret k(x, y) as the capacity of the edge from x to y.

We draw each edge for which k(x, y) > 0.

s s'

A network of connected nodes



2.4. Applications 65

s s'

3

3

5

10

7

8
4

6
6

1
95

7

1

3

5

4

4

3

9

A network with flow capacities

REMARK. The symmetry condition (2.25) says that the capacity is the

same regardless of the direction of the flow along an edge. We do not really

need to require this, but it simplifies our illustrations. �

DEFINITION. A flow in (N, k) is a function f : N ×N → R such that

(i) f(x, y) = −f(y, x)

(ii) f(x, y) ≤ k(x, y)

(iii)
∑

y∈N f(x, y) = 0 if x 6= s, s′.

(iv) f(s, x) ≥ 0, f(x, s′) ≥ 0 for all x ∈ N .

Note that (i) implies that f(x, x) = 0

NOTATION. If A,B are subsets of N , we write

k(A,B) =
∑
x∈A

∑
y∈B

k(x, y),

f(A,B) =
∑
x∈A

∑
y∈B

f(x, y).

�

DEFINITIONS.

(i) The value of a flow is

v(f) = f(s,N) =
∑
x∈N

f(s, x).

(ii) A flow f0 is called maximal if

v(f0) ≥ v(f)

for all flows f on our network.



66 2. LINEAR OPTIMIZATION

We wish to study maximal flows and in particular to find some sort of

mathematical characterization. Now this is in fact a linear programming

problem, and we can write the foregoing explicitly as a canonical problem

(P). And this would then lead us to some characterization of a maximal

flow in terms of the minimum of an appropriate dual problem (D). See

Bertsekas–Tsitsiklis [B-T] for more insight on this.

But it is more interesting to search directly for a dual problem, defined

in terms of the network geometry:

DEFINITIONS.

(i) Let C ⊆ N such that s ∈ C, s′ 6∈ C, and let

C ′ = N \ C.

The pair (C,C ′) is called a cut.

(ii) The capacity of the cut is

k(C,C ′).

(iii) A cut C0 is minimal if

k(C0, C
′
0) ≤ k(C,C ′)

for all cuts C.

LEMMA 2.4.3. (i) If f is any flow and (C,C ′) is any cut, we have

(2.26) f(C,C ′) ≤ k(C,C ′).

and

(2.27) v(f) = f(C,C ′).

(ii) Therefore

(2.28) max
f

v(f) ≤ min
(C,C′)

k(C,C ′).

REMARK. The inequality (2.28) asserts a “weak duality” between flows

and cuts, and is an analog of our general inequality (2.1) for linear program-

ming. �

Proof. 1. We know f(x, y) ≤ k(x, y). Sum over x ∈ C and y ∈ C ′, to

derive (2.26).

2. We also have f(C,C) =
∑

x∈C,y∈C f(x, y) = 0, since f(x, y) =

−f(y, x). So

f(C,C ′) = f(C,C ′) + f(C,C)

= f(C,N)
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=
∑
x∈C

f(x,N) = f(s,N) = v(f),

since f(x,N) = 0 for all x 6= s, s′. This gives (2.27), which with (2.26)

implies (2.28). �

By analogy with our basic linear programming theory, we expect to have

a “strong duality” between maximal flows and minimal cuts. This is indeed

so:

THEOREM 2.4.4 (Max Flow, Min Cut Theorem). The flow f0 is

maximal if and only if there exists a minimal cut (C0, C
′
0) such that

(2.29) v(f0) = k(C0, C
′
0).

Therefore

(2.30) max
f

v(f) = min
(C,C′)

k(C,C ′).

Proof. 1. Suppose f0 is a maximal flow. We will prove that there exists a

minimal cut (C0, C
′
0) with v(f0) = k(C0, C

′
0).

Let us first introduce some terminology. We say an edge (x, y) is unsatu-

rated if f0(x, y) < k(x, y). Likewise, a path x1, . . . , xk of nodes is unsaturated

if each edge (xi−1, xi) along this path is unsaturated. Let us also define

C0 = {x ∈ N | there exists an unsaturated path from s to x} .

Thus s ∈ C0, s
′ 6∈ C0, since, if not, we could increase flow along an unsatu-

rated path from s to s′, contradicting that f0 is a maximal flow. Therefore

(C0, C
′
0) is a cut.

2. We next claim that

(2.31) f0(x, x
′) = k(x, x′) if x ∈ C0, x

′ ∈ C ′0.

To prove this, let us suppose instead that f0(x, x
′) < k(x, x′). We could

then add the edge (x, x′) to unsaturated path from s to x, thereby finding

an unsaturated path from s to x′. But this is impossible, since x′ ∈ C ′0.
Now sum the equality (2.31) over x ∈ C0, x

′ ∈ C ′0 and recall (2.27), to

learn that

v(f0) = f0(C0, C
′
0) = k(C0, C

′
0).

Recall also from (2.26) that v(f0) = f0(C,C
′) ≤ k(C,C ′) for any cut C. It

follows that

k(C0, C
′
0) ≤ k(C,C ′)

for any cut C; and consequently (C0, C
′
0) is a minimal cut.
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3. Conversely, suppose now that f0(C0, C
′
0) = k(C0, C

′
0). We will show

f0 is a maximal flow and (C0, C
′
0) is a minimal cut.

Let f be any flow. Then

v(f) = f(C0, C
′
0) ≤ k(C0, C

′
0) = f(C0, C

′
0) = v(f0);

it follows that f0 is maximal. Finally, let C be any cut.Then

k(C,C ′) ≥ f0(C,C ′) = v(f0) = k(C0, C
′
0),

and so (C0, C
′
0) is a minimal cut. �

EXAMPLE. For our previous example, we identify a minimal cut as drawn:

s s'

3

3

5

10

7

8
4

6
6

1
95

7

1

3

5

4

4

3

9

A minimal cut

The capacity of this cut, which is the total capacity of the 5 edges

crossing the red curve, is 1 + 3 + 3 + 1 + 3 = 11. Here is a flow that saturates

the flow capacity across this cut, and is therefore maximal:

s s'

3

3

6

1

1

3
4

4

37

1

0

0

1

2

0 3

0

4 8

A maximal flow

�

EXAMPLE. (BRAESS’ PARADOX) We discuss next an interesting,

and somewhat related, example of a game theory problem for network flow.
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The picture illustrates a simple highway network, connecting the 2 cites

s and s′ by two routes, one through the village a and the other through the

village b. If we let x denote the number of cars using a given road segment,

the “cost” to each driver is the time required to drive that segment, which

we assume is a function of the traffic density x, as marked in the picture.

s

a
b

s'

10x

x+50

x+50

10x

Transit times on a road network

Driving a road network. Suppose now that 6 cars enter the road

network at s and exit at s′. Each driver wants to minimize his/her total

driving time. How should each driver go from s to s′?

Consider the possibility that 3 drivers go through village a, and 3 go

through village b. Then the cost for every driver is (x + 50) + 10x = 83,

since x = 3.

s

a
b

s'

10x

x+50

x+50

10x

3

33

3

A stable traffic pattern

Is this allocation of cars on the road network stable? In other words,

can any driver lower her/his cost by changing their route, assuming that the

other drivers do not change their driving patterns?

To decide this, suppose one driver decides to change from going through

village a and instead drives through village b. The cost to the 4 drivers

who now go through village b is (x + 50) + 10x = 94 for x = 4. Since

this is greater than the original cost, no driver has an incentive to change.
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Consequently the original configuration of 3 cars going through each of the

villages is stable.

Building a new roadway. But suppose now that we build a new (one-

way) road from a to b, along which the cost is x + 10. How does this new

road change the incentives of our drivers?

s

a
b

s'

10x

x+50

x+50

10x

x+10

A new road

Suppose a particular driver, who had been driving [s, b, s′], decides in-

stead to take the new route [s, a, b, s′]. Her driving time is now (10 × 4) +

(1 + 10) + (10 × 3) = 81, which is less than her original travel time of 83.

Consequently she has an inventive to change his route, and her change may

in turn cause the others to change their routes.

What if drivers reach the following pattern?

s

a
b

s'

10x

x+50

x+50

10x

4

42

2x+10

2

A new driving pattern

We calculate that the cost for the route [s, a, s′] is now (10×4)+(2+50) =

92; the cost for [s, a, b, s′] is (10× 4) + (2 + 10) + (10× 4) = 92; and the cost

for [s, b, s′] is (2 + 50) + (4× 10) = 92. This new driving pattern is worse for

everyone. In addition, we have the paradoxical fact that this worse pattern

is also stable, meaning that no one can lower his/her cost if everyone else

continues driving as before. To see this, we compute the costs if one driver

alone changes from the pattern above:
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• If a driver changes her route from [s, a, b, s′] to [s, a, s′], her cost changes

from 92 to (10× 4) + (3 + 50) = 93.

• If instead a driver changes from [s, b, s′] to [s, a, s′], his cost changes

from 92 to (10× 5) + (3 + 50) = 103.

• If a driver changes from [s, b, s′] to [s, a, b, s′], her cost changes from 92

to (10× 5) + (3 + 10) + (10× 4) = 103.

So no one has an incentive to change, and thus building the new road has

caused everyone’s driving time to increase. (See Körner [Ko] for more, and

consult also Cohen–Horowitz [C-H] for further examples of related opti-

mization paradoxes.)

�

2.4.4. Transportation problem.

We discuss next the famous linear programing transportation problem,

also known as the discrete Monge-Kantorovich problem.

ECONOMIC INTERPRETATION. We have M factories, from which

we will ship their output of some product to N different customers. Let

si ≥ 0 denote the supply available at a factory i (i = 1, . . . ,M) and dj ≥ 0

denote the demand of customer j (j = 1, . . . , N). Our problem is to decide

how much of the output of each factory to send to each customer, so as to

minimize the total shipping costs.

We write xij ≥ 0 for the amount shipped from factory i to customer

j and cij ≥ 0 for the unit cost of transportation from i to j. The con-

straint
∑N

j=1 xij = si means that everything from factory i is shipped away.

Likewise, the requirement
∑M

i=1 xij = dj means that each customer receives

precisely enough to meet his/her requirements. �

In mathematical terms, we wish to find x0ij to

(MK)


minimize

∑
i,j cijxij

subject to xij ≥ 0,∑N
j=1 xij = si (i = 1, . . . ,M)∑M
i=1 xij = dj (j = 1, . . . , N).

We assume

(2.32)
M∑
i=1

si =
N∑
j=1

dj ,

so that the total supply equals the total demand.
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NOTATION. We will usually regard X as an M ×N matrix, and write

X =

 x11 . . . x1N
...

. . .
...

xM1 . . . xMN

 , C =

 c11 . . . c1N
...

. . .
...

cM1 . . . cMN

 ,

C ·X =
∑
i,j

cijxij , s =

 s1...
sM

 , d =

d1...
dN

 .
�

THEOREM 2.4.5.

(i) There exists a feasible solution for (MK) if and only if (2.32) holds.

(ii) If (2.32) holds, there exists an optimal solution X0 of (MK).

Proof. 1. To prove (i), note that if X is feasible, then∑
j

xij = si,
∑
i

xij = dj ,

and therefore
∑

i si =
∑

ij xij =
∑

j,i xij =
∑

j dj . Conversely, if (2.32)

holds, we can design a feasible X as follows:

• Factory 1 sends as much as possible to customer 1, then to cus-

tomer 2 (if s1 > d1), then to customer 3 (if s1 > d1 + d2), etc.

• Then factory 2 sends as much as possible to the last customer not

fully satisfied with the shipment from factory 1, etc.

• Continue, until factory M ships the last of its supply to customer

N.

Since the total supply equals the total demand, this produces a feasible

shipping plan X.

2. According to (i), (MK) has feasible solutions if the supply and demand

balance condition (2.32) is valid. Furthermore, since cij ≥ 0,

inf {C ·X | X is feasible} ≥ 0.

Thus Statement I of the Duality Theorem applies and so (MK) has an

optimal solution. �

We wish now to study the structure of an optimal transportation plan

X0. As usual, the dual problem and equilibrium equations contain interest-

ing information:
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THEOREM 2.4.6. (i) The dual problem for (MK) is to find u ∈ RM , v ∈
RN to

(MK∗)

{
maximize v · d− u · s, subject to

vj − ui ≤ cij (i = 1, . . . ,M ; j = 1, . . . , N).

(ii) The equilibrium conditions are

(E) vj − ui = cij if xij > 0.

Proof. 1. The derivation of the dual problem is a bit tricky, since the

variable X has two indices. Remember that we usually think of X as an

M × N matrix, but sometimes as a vector in RMN . Then the equality

constraints in (MK) become

AX =



∑
j x1j
...∑

j xMj∑
i xi1
...∑
i xiN


=



s1
...

sM
d1
...

dN


=

[
s

d

]
= b.

Now let y =

[
−u
v

]
∈ RM+N ; so that

y · b = v · d− u · s.

For any M ×N matrix Z, we have

(2.33)

AT y · Z = y ·AZ = −
M∑
i=1

ui

 N∑
j=1

zij

+
N∑
j=1

vj

(
M∑
i=1

zij

)

=
∑
ij

(vj − ui)zij .

Select k ∈ {1, . . . ,M}, l ∈ {1, . . . , N}, and put

zij =

{
1 if i = k, j = l

0 otherwise.

Then (2.33) tells us

(AT y)kl = vl − uk.
Hence the duality condition AT y ≤ C is equivalent to

vl − uk ≤ ckl (k = 1, . . . ,M ; l = 1, . . . , N),

and the equilibrium equations (E) now follow from our general theory. �
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ECONOMIC INTERPRETATION. Let u0, v0 be optimal for the dual

problem, and observe that, if necessary, we can add constants to ensure

u0i ≥ 0, v0j ≥ 0.

Let us interpret

u0i = “cost” to produce one unit at factory i,

v0j = “payment” when we sell one unit to customer j

The equilibrium conditions (E) say v0j = u0i + cij if x0ij > 0. This means

that we ship from i to j only if “payment = cost of production + cost of

shipping”.

So if v0j < u0i + cij , we should not ship anything from i to j. The point is

that we can get useful information about the MN entries x0ij for an optimal

shipping plan, in terms of the far fewer M +N numbers u0i , v
0
j . �

EXAMPLE. Suppose our supplies, demands and transport costs are

s =

[
8

3

]
, d =

4

2

5

 , C =

[
9 7 1

5 4 0

]
.

Let us show that

X0 =

[
1 2 5

3 0 0

]
is optimal. To confirm this, we note that X0 has the required row and

column sums, and compute that C ·X0 =
∑

i,j cijx
0
ij = 43.

We turn next to the dual problem, and recall that the constraints and

equilibrium equations read

vj − ui ≤ cij , vj − ui = cij if xij > 0.

Let us show that

u0 =

[
−1

3

]
v0 =

8

6

0

 .
are optimal for the dual problem. We have[

v01 − u01 v02 − u01 v03 − u01
v01 − u02 v02 − u02 v03 − u02

]
=

[
9 7 1

5 3 −3

]
≤
[
9 7 1

5 4 0

]
and thus u0, v0 are feasible. Since

3∑
j=1

v0jdj −
2∑
i=1

u0i si = 44− 1 = 43 = C ·X0,
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u0, v0 are optimal for the dual, and our transportation plan X0 is indeed

optimal for (MK). �

We will see in the next section that it is no accident that when the

supplies and demands are all integers, so also are the entries of X0.

2.4.5. Integer-valued solutions.

We will show in this section that certain linear programming problems,

including the transportation problem, have integer solutions. (We will freely

use various definitions and theorems concerning convex sets that will be

developed in the next chapter. Readers may consequently wish to skip this

section until later.)

We continue our discussion of the transportation problem and now make

the additional assumption that

(2.34) {s1, . . . , sM} and {d1, . . . , dN} are nonnegative integers.

We will prove that there then exists an optimal solution X0 such that each

x0ij is a nonnegative integer.

DEFINITION. The set of transportation matrices is

X =

X =

 x11 . . . x1N
...

. . .
...

xM1 . . . xMN

 | xij ≥ 0,
N∑
j=1

xij = si,
M∑
i=1

xij = dj

 .

It is easy to check that X is a convex subset of the space of all real

M ×N matrices.

LEMMA 2.4.4. If the matrix X is an extreme point of X , then

(2.35) X has at most M +N − 1 non-zero entries.

Proof. 1. Suppose instead that X has at least M + N positive entries.

Select any subset of precisely M +N positive entries:

(2.36) {xij | (i, j) ∈ K}

Here the index setK ⊂ {1, . . . ,M}×{1, . . . , N} has cardinality |K| = M+N

and

(2.37) xij > 0 if (i, j) ∈ K.
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2. Consider now the system of linear equations

(2.38) AZ =



∑
j z1j
...∑
j zMj∑
i zi1
...∑
i ziN


=



0
...

0

0
...

0


= 0,

for the unknowns

Z =

 z11 . . . z1N
...

. . .
...

zM1 . . . zMN

 .
Note that the range of the matrix A is not all of RM+N , since if

AX =



∑
j x1j
...∑

j xMj∑
i xi1
...∑
i xiN


=



e1
...

eM
f1
...

fN


=

[
e

f

]
,

then necessarily
M∑
i=1

ei =
N∑
j=1

fj .

3. Our goal is to find a non-zero solution Z of (2.38) such that

(2.39) zij = 0 if (i, j) /∈ K,

where K is the index set from (2.36). Now if we enforce (2.39), then (2.38)

becomes a system of M +N equations for the M +N unknowns

Ẑ = {zij | (i, j) ∈ K}.

We can write this as ÂẐ = 0 for an appropriate (M +N)× (M +N) matrix

Â. But the matrix Â does not have full rank M +N , since, as noted above,

the matrix A has rank strictly less than M + N . Hence there exists Z 6= 0

solving (2.38) and (2.39)

4. Now set

X+ = X + εZ, X− = X − εZ.



2.4. Applications 77

For ε > 0 small enough, we have X± ∈ X and also

X =
1

2
X+ +

1

2
X−.

But this is impossible, since X is an extreme point of X . This contradiction

shows that (2.35) must be valid. �

This proof, and the next, are based upon ideas in Karlin [K, Section

5.8].

THEOREM 2.4.7. If X is an extreme point of X , then

(2.40) each xij is a nonnegative integer.

Proof. 1. Assume first that M ≤ N . If each of the N columns of X

contained two or more nonzero entries, the total number k of nonzero entries

would satisfy

k ≥ 2N ≥M +N.

But this is impossible, since (2.35) says k ≤ M + N − 1. Therefore X has

at least one column with at most one nonzero entry. Since
∑N

j=1 xij = si is

a nonnegative integer, this column has at most one positive entry, which is

an integer.

Next, remove this column from X, creating a new M × (N − 1) matrix

X̄, which is an extreme point of the convex setX̄ | x̄ij ≥ 0,

N−1∑
j=1

x̄ij = s̄i,

M∑
i=1

x̄ij = d̄j


for appropriate integers s̄i ≥ 0, d̄i ≥ 0.

2. If N ≤M , a similar argument shows that X has a least one row, with

at most one positive entry, which is an integer. We remove that row, and

obtain a new matrix X̄ that is an extreme point of an appropriate convex

set of (M−1)×N matrices, with nonnegative integer row and column sums.

3. We now repeat the foregoing argument, removing at each step either

a column or row containing at most one nonzero entry, which is an integer.

The process stops after M +N steps. �

THEOREM 2.4.8. Under the assumption (2.34) that the individual sup-

plies and demands are positive integers, the transportation problem (MK)

has a solution X0 such that

(2.41) x0ij is a nonnegative integer
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for i = 1, . . . ,M and j = 1, . . . , N .

Proof. 1. Let Y ⊆ X denote the collection of transportation matrices with

integer entries. Then clearly

min
X∈X

C ·X ≤ min
Y ∈Y

C · Y.

Suppose next that X0 ∈ X is optimal. Then according to Theorem 2.4.7,

we can write X0 as a weighted sum of matrices with integer entries:

(2.42) X0 =
m∑
k=1

θkY
k,

m∑
k=1

θk = 1, 0 < θk ≤ 1, Y k ∈ Y.

Then

min
X∈X

C ·X = C ·X0

=
m∑
k=1

θk

(
C · Y k

)
≥

m∑
k=1

θk

(
min
Y ∈Y

C · Y
)

= min
Y ∈Y

C · Y.

This shows each matrix Y k in (2.42) must be optimal for the transporta-

tion problem, since otherwise we would have a strict inequality in the last

calculation above. �



Chapter 3

CONVEXITY

This chapter introduces concept of convexity, in both its geometric and

functional guises. It is impossible to overstate the importance of convexity

in pure and applied mathematics.

3.1. Convex geometry

We have so far introduced calculus tools for optimization in Chapter 1, and

linear algebra tools in Chapter 2. We now add in geometric insights.

3.1.1. Convex sets.

DEFINITION. A set C ⊆ Rn is convex if for all a, b ∈ C and 0 ≤ θ ≤ 1,

we have

θa+ (1− θ)b ∈ C.

GEOMETRIC INTERPRETATION. So if C is convex, then for all

choices of a, b ∈ C, the line segment connecting a and b also lies in C. �

C

a

b

a+(1- )b

79
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DEFINITIONS. Let {a1, . . . , ap} ⊂ Rn.
(i) If θk ≥ 0 and

∑p
k=1 θk = 1, we call

(3.1)

p∑
k=1

θkak

a convex combination of a1, . . . , ap.

(ii) The convex polytope generated by a1, . . . , ap is

〈a1, . . . , ap〉 =

{
p∑

k=1

θkak | θk ≥ 0,

p∑
k=1

θk = 1

}
.

a
1

a
2

a
3

a
4

a
5

a
6

A convex polytope

REMARK. It is straightforward to prove by induction that if C is convex

and {a1, . . . , ap} ⊂ C, then each convex combination of the form (3.1) also

belongs to C.

It is also easy to see that the convex polytope 〈a1, . . . , ap〉 is convex and

is the smallest convex set containing the points {a1, . . . , ap}. �

Next we use ideas from linear programming to prove a famous theorem

about convex polytopes.

THEOREM 3.1.1 (Caratheodory’s Theorem). Let b belong to the

convex polytope 〈a1, . . . , ap〉 ⊂ Rn.

Then we can write

(3.2) b =

n+1∑
k=1

θka
jk

where 1 ≤ j1 < · · · < jn+1 ≤ p, θk ≥ 0,
∑n+1

k=1 θk = 1.

REMARK. So even if p is very large, we can write any point in the polytope

〈a1, . . . , ap〉 as a convex combination of at most n+1 of the {a1, . . . , ap}. �
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Proof. Since b ∈ 〈a1, . . . , ap〉, there exists a solution x ∈ Rp of

(3.3) Ax =

[
b

1

]
, x ≥ 0

for the (n+ 1)× p matrix

A =

[
a1 a2 . . . ap

1 1 1

]
.

But according to Theorem 2.1.5, there exists also a basic solution x∗ ∈ Rp
of

Ax∗ = b, x∗ ≥ 0.

This means that x∗ has at most m+1 non-zero entries {xj1 , . . . , xjm}, corre-

sponding to independent columns of A. Then m ≤ n+ 1 and we can relabel

θk = xjk for k = 1, . . . , n to obtain (3.2). �

REMARK (Extreme points). Let C be a convex set. We say that e ∈ C
is an extreme point of C if there do not exist x, y ∈ C so that

(3.4) e = θx+ (1− θ)y, with 0 < θ < 1.

In other words, e ∈ C is an extreme point if it cannot be written as a

nontrivial convex combination of two other points in C.

An important theorem, the proof of which we omit, states that if C ⊂ Rn
is closed, bounded and convex, then

C =

{
n+1∑
k=1

θke
k | 0 ≤ θk ≤ 1,

n+1∑
k=1

θk = 1, ek ∈ E

}
,

where E denotes the extreme points of C. In other words, each point in a

convex set is a convex combination of its extreme points. �

3.1.2. Separating hyperplanes.

We discuss now the geometry of convex sets and of hyperplanes. The

reader should first review as necessary the notion of a closed set, discussed

in Appendix D.

LEMMA 3.1.1. Let C be a non-empty, closed, convex subset of Rn and

suppose 0 6∈ C.

(i) Then there exists a unique point x0 ∈ C such that

(3.5) |x0| = min{|x| | x ∈ C} > 0.

(ii) Furthermore,

(3.6) 0 ≤ x0 · (x− x0) for all x ∈ C.
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REMARK. We call (3.6) a variational inequality, which characterizes

our solution x0 of the minimization problem (3.5). We will learn more about

variational inequalities in Chapter 5. �

Proof. 1. Let

δ = inf{|x| | x ∈ C} ≥ 0.

Select {xk}∞k=1 ⊂ C with δ = limk→∞ |xk|. According to the Bolzano-

Weierstrass Theorem, there is a convergent subsequence

lim
j→∞

xkj = x0.

Consequently, |x0| = limj→∞ |xkj | = δ. Since C is closed, x0 ∈ C; and since

0 6∈ C, δ > 0.

2. We claim next that x0 is the unique point in C with |x0| = δ. To

see this, suppose x1 ∈ C also satisfies |x1| = δ. Then (x1 + x0)/2 ∈ C and

therefore ∣∣∣∣x1 + x0
2

∣∣∣∣ ≥ δ.
But

|x1 − x0|2︸ ︷︷ ︸
≥0

+ |x1 + x0|2︸ ︷︷ ︸
≥4δ2

= 2(|x1|2 + |x0|2)︸ ︷︷ ︸
4δ2

,

and thus x1 = x0.

3. To prove (3.6), let x be any point in C. Then also (1− θ)x0 + θx ∈ C
if 0 < θ ≤ 1. Therefore

|x0|2 ≤ |(1− θ)x0 + θx|2 = |x0 + θ(x− x0)|2

= |x0|2 + 2θx0 · (x− x0) + θ2|x− x0|2.

Consequently,

0 ≤ 2x0 · (x− x0) + θ|x− x0|2.
Send θ → 0, to derive the variational inequality (3.6).

�

DEFINITION. Let a ∈ Rn, b ∈ R. An expression of the form

a · x+ b = 0

determines a hyperplane in Rn.

More precisely, the hyperplane comprises all the points x ∈ Rn that

satisfy the equation a ·x+b = 0. It is an (n−1)-dimensional affine subspace

and passes through the origin if and only if b = 0.



3.1. Convex geometry 83

DEFINITION. Let S1, S2 be two subsets of Rn.

(i) We say the hyperplane a · x+ b separates S1 and S2 if

a · x+ b ≥ 0 for all x ∈ S1,
a · x+ b ≤ 0 for all x ∈ S2.

(ii) We say that a · x+ b strictly separates S1 and S2 if

a · x+ b > 0 for all x ∈ S1,
a · x+ b < 0 for all x ∈ S2.

THEOREM 3.1.2 (Separating Hyperplane Theorem). Let C ⊂ Rn
be convex, closed and non-empty, and suppose e 6∈ C.

Then there exists a hyperplane a · x+ b that strictly separates C and e.

REMARK. It is important for subsequent applications that we do not

require that C be bounded. �

C

e

a x+b=0

A point separated from a convex set

Proof. Upon shifting the coordinates if necessary, we may assume e = 0.

According to Lemma 3.1.1, there exists x0 ∈ C such that

0 < δ = |x0| = min{|x| | x ∈ C}.

Let m = 1
2x0 and a = x0/δ, so that |a| = 1. Consider the hyperplane

a · (x−m) = 0; that is,

a · x+ b = 0

where b = −a ·m.
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2. For e = 0, we have

(3.7) a · e+ b = b = −a ·m = −x0
δ
· x0

2
= −δ

2
< 0

3. Next, assume x ∈ C. The variational inequality (3.6) says 0 ≤
x0 · (x− x0), and therefore

0 ≤ (δa) · (x− 2m).

We cancel δ > 0, to learn that

0 ≤ a · (x−m)− a ·m = a · (x−m)− δ

2
.

Hence for all x ∈ C,

�(3.8) a · x+ b = a · (x−m) ≥ δ

2
> 0.

3.1.3. Dual convex sets.

As a first application of separating hyperplanes, we discuss next a geo-

metric form of convex duality.

DEFINITION. Let C ⊂ Rn be closed and convex, with 0 ∈ C. Its polar

dual is the set

C0 = {y ∈ Rn | x · y ≤ 1 for all x ∈ C} .

THEOREM 3.1.3 (Dual convex sets).

(i) C0 is closed, convex, 0 ∈ C0.

(ii) We have the duality assertion

(C0)0 = C.

Proof. Statement (i) is easy. To prove (ii), note that

(C0)0 =
{
z ∈ Rn | y · z ≤ 1 for all y ∈ C0

}
.

Let x ∈ C. Then y · x ≤ 1 for all y ∈ C0 and thus x ∈ (C0)0. Consequently

C ⊆ (C0)0.

If z ∈ (C0)0 \ C, then since C is closed, the Supporting Hyperplane

Theorem says there exist a ∈ Rn, b ∈ R such that

(a) a · z + b < 0,

(b) a · x+ b > 0 for all x ∈ C.
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Since 0 ∈ C, (b) implies b > 0. So if we write

y = −a
b
,

(b) says also that y · x < 1 for all x ∈ C. Hence y ∈ C0. Since z ∈ (C0)0, it

follows that y · z ≤ 1; and therefore

a · z + b ≥ 0.

But this contradicts (a). Thus (C0)0 \C is empty and hence (C0)0 = C. �

REMARK. The proof illustrates an interesting mathematical fact, that

separating hyperplanes imply convex duality. We will see more of this later.

�

EXAMPLE. Let C =
{
x ∈ R2 | |x1| ≤ R

2 , |x2| ≤
R
2

}
be the square with

center 0 and sides of length R parallel to the coordinate axes. Its polar is

C0 =
{
y ∈ R2 | x · y ≤ 1 for all x ∈ C

}
=
{
y ∈ R2 | |y1|+ |y2| ≤ 2

R

}
.

This is a square with sides of length R0 = 2
√
2

R , rotated by π
4 . Observe that

then (C0)0 = C is the original square, with side length 2
√
2

R0 = R.

C C
0

Look online for more exciting pictures of convex polyhedra and their

duals. �

3.1.4. Farkas alternative.

Our next goal is the Farkas alternative, a statement about solving vector

inequalities. This turns out to have a surprising geometric interpretation

involving separating hyperplanes for certain convex cones.
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DEFINITION. Let {a1, . . . , an} ⊂ Rm. The set

C =

{
n∑
i=1

xia
i | xi ≥ 0 (i = 1, . . . , n)

}
is called the finite cone generated by {a1, . . . , an}.

a
1

a
2

a
3

a
4

0

A finite cone

REMARK. Observe that b ∈ C precisely when we can solve Ax = b, x ≥ 0,

when

A = [a1 | . . . | an]

is the m× n matrix whose columns are {a1, . . . , an}. This is because Ax =∑n
i=1 xia

i. �

DEFINITION. If {a1, . . . , ak} are independent, we call the finite cone they

generate a basic cone.

LEMMA 3.1.2. Suppose {a1, . . . , an} generate the finite cone C. Let

C1, . . . , Cq be the basic cones generated by all linearly independent subsets

of {a1, . . . , an}. Then

(3.9) C =

q⋃
i=1

Ci.

Proof. Obviously Ci ⊆ C (i = 1, . . . , q) and so
⋃q
i=1Ci ⊆ C.

Now select b ∈ C = {Ax | x ≥ 0}. There then exists a solution of

Ax = b, x ≥ 0;



3.1. Convex geometry 87

and according to our earlier Theorem 2.1.5, there in fact exists a basic so-

lution:

Ax∗ = b, x∗ ≥ 0.

This means that the columns {aj1 , . . . , ajm} of A corresponding to the non-

zero entries of x∗ are independent. So b belongs to the basic cone generated

by {aj1 , . . . , ajm} and thus b ∈
⋃q
i=1Ci. This is true for all b ∈ C; conse-

quently, C ⊆
⋃q
i=1Ci. �

THEOREM 3.1.4. Let C be the finite cone generated by {a1, . . . , an} ⊂
Rm. Then C is convex and closed.

Proof. 1. Let b1, b2 ∈ C, 0 ≤ θ ≤ 1. Then there exist x1, x2 such that

b1 = Ax1, x1 ≥ 0 and b2 = Ax2, x2 ≥ 0. Therefore

(1− θ)b1 + θb2 = A
(
(1− θ)x1 + θx2

)
for x = (1− θ)x1 + θx2 ≥ 0. Thus (1− θ)b1 + θb2 ∈ C, and so C is convex.

2. Let Ci be a basic cone, generated by an independent set

{aj1 , . . . , ajl} ⊆ {a1, . . . , an}.

Assume {bk}∞k=1 ⊂ Ci, with limk→∞ b
k = b0. I claim

(3.10) b0 ∈ Ci,

and this will show that Ci is closed.

First, let us write B = {j1, . . . , jl}. Since the vectors {aj | j ∈ B} are

independent, if u = [uj1 . . . ujl ]
T ∈ Rl and

∑
j∈B uja

j = 0, it follows that

u = 0. Therefore for all u ∈ Rl with |u| = 1,
∑

j∈B uja
j 6= 0. Hence the

Extreme Value Theorem implies that there exists ε > 0 such that

min


∣∣∣∣∑
j∈B

uja
j

∣∣∣∣ | |u| = 1

 = ε > 0.

Thus if v ∈ Rl,

(3.11)

∣∣∣∣∣∣
∑
j∈B

vja
j

∣∣∣∣∣∣ ≥ ε|v|.
We turn now to the proof of (3.10). Observe that we can write bk = Axk,

where xk ≥ 0, xk = [0xkj1 0 . . . 0xkjl 0]T . Then

bk =
∑
j∈B

xkja
j ,
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and therefore (3.11) implies

(3.12) |xk| ≤ 1

ε
|bk| (k = 1, . . . ).

The sequence {xk}∞k=1 is therefore bounded, and so we can apply the Bolzano-

Weierstrass Theorem to extract a convergence subsequence:

lim
j→∞

xkj = x0.

Then x0 ≥ 0, and Ax0 = limj→∞Ax
kj = limj→∞ b

kj = b0. Furthermore,

x0j = 0 except possibly for the indices j ∈ B. Hence b ∈ Ci.

3. So each basic cone Ci is closed. As we show in Appendix D, the finite

union of closed sets is closed, and hence C =
⋃q
i=1Ci is closed. �

REMARK. This proof that a finite cone is closed is surprisingly tricky,

and the key is the estimate (3.12) within a basic cone. �

In view of the previous theorem, we can apply the Separating Hyperplane

Theorem to a finite cone. This has the following major payoff:

THEOREM 3.1.5 (Farkas alternative). Let A be an m × n matrix,

b ∈ Rm. Then either

(i) Ax = b, x ≥ 0 has a solution x ∈ Rn, or

(ii) AT y ≥ 0, y · b < 0 has a solution y ∈ Rm,

but not both.

Proof. 1. Assume x solves (i), y solves (ii). Then

0 ≤ x · (AT y) = Ax · y = b · y < 0,

which is a contradiction. So (i) and (ii) cannot both be true.

2. Suppose (i) fails. We will show that then (ii) holds. Now the failure

of (i) means

b 6∈ C = {Ax | x ≥ 0}.
We know that C is closed and convex. Hence the Separating Hyperplane

Theorem asserts that there exist a ∈ Rm, c ∈ R such that

(3.13) a · z + c > 0 (z ∈ C)

and

(3.14) a · b+ c < 0.
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Let x ≥ 0, µ ≥ 0. Set z = µAx = A(µx) ∈ C. According to (3.13),

a · (µAx) + c > 0.

Dividing by µ > 0 and letting µ→∞, we see that

a ·Ax ≥ 0.

So

(ATa) · x ≥ 0

for all x ≥ 0. Thus ATa ≥ 0.

Let y = a; then AT y ≥ 0. Put z = 0 in (3.13), to deduce that c > 0.

Then (3.14) says

b · y = a · b < −c < 0.

So b · y < 0. �

3.1.5. Applications.

This section explores several interesting uses of the Farkas alternative.

1. Linear programming

In our proof of the Duality Theorem for linear programming in Chapter

2, we invoked without proof Theorem 2.3.1, a variant of the Farkas alterna-

tive stating that either

(i)∗ Ax ≤ b, x ≥ 0 has a solution x ∈ Rn, or

(ii)∗ AT y ≥ 0, y · b < 0, y ≥ 0 has a solution y ∈ Rm,

but not both.

Proof. Note Ax ≤ b if and only if Ax+ z = b for some z ≥ 0. So (i)* says

(i)
[
A I

]︸ ︷︷ ︸
Ã

[
x

z

]
= b has a solution x̃ =

[
x

z

]
≥ 0.

The Farkas alternative of (i) is

(ii) ÃT y =

[
AT y

y

]
≥ 0, y · b < 0 has a solution.

This is (ii)*. �

With this, we have finally completed the full proof of the Duality The-

orem for linear programming.
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REMARK. Recall our dual canonical linear programming problems

(P)


min c · x,

subject to

Ax = b, x ≥ 0.

(D)


max b · y,

subject to

AT y ≤ c.

Case II of the Duality Theorem 2.3.3 tells us that if (P) has no feasible

solutions, but (D) does, then sup{b · y | AT y ≤ c} = +∞.

It is informative to see that the Farkas alternative provides a quick proof

of this. Let y be feasible for (D), so that AT y ≤ c. If there are no feasible

solutions x for (P), then Farkas (i) fails. Thus Farkas (ii) holds: there exists

z ∈ Rm with

AT z ≥ 0, z · b < 0.

But then y − µz is feasible for (P) if µ > 0, since

AT (y − µz) = AT y − µAT z ≤ AT y ≤ c.

Also, b · (y − µz) = b · y − µ(b · z︸︷︷︸
<0

)→∞ as µ→∞. �

2. The Fredholm alternative of linear algebra

Next we utilize the Farkas Alternative for an unusual proof of the basic

duality assertion for linear mappings. That we can do this is not surprising,

since linear algebra is, strictly speaking, a subarea of linear programming.

NOTATION. Let A be an m× n matrix. Its null space is

N(A) = {x | Ax = 0} ⊆ Rn

and its range is

R(A) = {Ax | x ∈ Rn} ⊆ Rm.
�

DEFINITION. If S is a subspace of Rn, its dual subspace is

S⊥ = {x ∈ Rn | x · s = 0 for all s ∈ S}.

THEOREM 3.1.6. (Duality for linear mappings)

(3.15) Ax = b has a solution x

if and only if

(3.16) b ∈ N(AT )⊥.
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GEOMETRIC INTERPRETATION. This assertion and the corre-

sponding statement for AT mean geometrically that

R(A) = N(AT )⊥, R(AT ) = N(A)⊥.

�

Proof. Ax = b has a solution x if and only if A(u− v) = b, u ≥ 0, v ≥ 0 has

a solution. Then [
A −A

]︸ ︷︷ ︸
Ã

[
u

v

]
= b.

This is Farkas (i). Farkas (ii) says

ÃT y ≥ 0, y · b < 0 has a solution.

That is, [
AT

−AT
]
y ≥

[
0

0

]
.

Then AT y ≥ 0 and −AT y ≥ 0, and so AT y = 0. Consequently (ii) says

AT y = 0, y · b < 0 has a solution.

So either (i) Ax = b has a solution x, or (ii) AT y = 0, y · b < 0 has a

solution y. Observe that (ii) is false if and only if b ∈ N(AT )⊥. �

3. Equilibria for Markov chains

A Markov matrix has the form

P =

p11 . . . p1n
...

. . .
...

pn1 . . . pnn

 ,
where pij ≥ 0 and

(3.17)

n∑
i=1

pij = 1 (j = 1, . . . , n).

PROBABILISTIC INTERPRETATION. Consider a particle that jumps

at each time k = 1, 2, . . . from one “box” or “state” to another. Assume

there are n such states and that pij is the probability of a jump from state

j to state i. The condition (3.17) means the sum of the probabilities over

all possible jumps is 1. We assume these probabilities are the same at each

time step, and that the jumps are independent.
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Now suppose at some time k, xj is the probability that particle is in

state j for j = 1, . . . , n. We write

x =

x1...
xn

 = state vector at time k

y =

y1...
yn

 = state vector at time k + 1

Then yi =
∑n

j=1 pijxj ; that is, y = Px. �

DEFINITION. A steady state is a vector x ∈ Rn such that

x = Px, x ≥ 0,
n∑
i=1

xi = 1.

THEOREM 3.1.7. If P is a Markov matrix, there exists a steady state.

REMARK. In particular, P has the real eigenvalue 1 and there is a cor-

responding eigenvector x with nonnegative entries. �

Proof. We write

A =

[
P − I
eT

]
(n+1)×n

, e =

1
...

1

 ∈ Rn

I =

1 0
. . .

0 1


n×n

, b =


0
...

0

1

 ∈ Rn+1.

We first observe that P has a steady state if and only if

(i) Ax = b, x ≥ 0 has a solution.

To see this, note that Ax = b, x ≥ 0 holds if and only if Px = x, x ≥ 0, e·x =

1, since e · x =
∑n

i=1 xi.) We will show (i) is true, by showing Farkas (ii)

fails:

(ii) AT y ≥ 0, y · b < 0 has a solution.

Here

AT =
[
P T − I | e

]
n×(n+1)

, y =


z1
...

zn
−µ

 , z =

z1...
zn

 .
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We have

(a) 0 ≤ AT y =
[
P T − I | e

] [ z
−µ

]
= P T z − z − µe

(b) 0 > y · b = [z − µ]T
[
0

1

]
= −µ.

Now (b) says µ > 0, and (a) says

P T z − z ≥ µe.

That is,
n∑
i=1

zipij ≥ µ+ zj (j = 1, . . . , n).

Assume zm = max1≤i≤n zi, and let j = m above:

µ+ zm ≤
n∑
i=1

zipim ≤ zm
n∑
i=1

pim = zm.

This however is a contradiction, since µ > 0. Consequently, Farkas (ii) fails,

and thus Farkas (i) holds. �

3.2. Convex functions

A convex function is a real-valued function such that the region above its

graph is a convex set. Convex functions therefore inherit many useful prop-

erties from convex sets.

3.2.1. Convex functions of one variable.

DEFINITION. (i) A function f : R→ R is called convex if

(C1) f(θx+ (1− θ)x̂) ≤ θf(x) + (1− θ)f(x̂)

for all x, x̂ ∈ R, 0 ≤ θ ≤ 1.

(ii) A function g : R→ R is called concave if −g is convex.

GEOMETRIC INTERPRETATION. If f is convex, then for all points

x, x̂ the graph of f lies below the line segment connecting [x f(x)]T and

[x̂ f(x̂)]T .

It is easy to see that f : R → R is a convex function if and only if its

epigraph

E =

{[
x

y

]
| y ≥ f(x), x ∈ R

}
⊂ R2

is a convex set. �



94 3. CONVEXITY

x x

E

f(x)
f(x)

The graph of a convex function

REMARK. It follows by induction that if f : R→ R is convex, then

(3.18) f

(
m∑
i=1

θixi

)
≤

m∑
i=1

θif(xi)

for all positive integers m, all x1, . . . , xm ∈ R, and all θ1, . . . , θm ≥ 0 such

that
∑m

i=1 θi = 1. �

THEOREM 3.2.1 (Equivalent characterizations of convexity).

(i) If f : R → R is continuously differentiable, then f is convex if and

only if

(C2) f(x) + f ′(x)(x̂− x) ≤ f(x̂)

for all x, x̂ ∈ R.

(ii) If f is twice continuously differentiable, then f is convex if and only

if

(C3) f ′′(x) ≥ 0

for all x ∈ R.

GEOMETRIC INTERPRETATION. The condition (C2) means that

the graph of the convex function f lies above each of its tangent lines. �
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x x

f(x) f(x)

The graph lies above tangent lines

Proof. 1. Assume f is continuously differentiable, and let us show (C1)

holds if and only if (C2) holds. So suppose (C1). Then

f(θx̂+ (1− θ)x) ≤ θf(x̂) + (1− θ)f(x),

and thus
f(x+ θ(x̂− x))− f(x)

θ
≤ f(x̂)− f(x).

Let θ → 0, to deduce that

f ′(x) · (x̂− x) ≤ f(x̂)− f(x).

This is (C2).

Now assume (C2). Then if w = θx+ (1− θ)x̂, we have

f(x) ≥ f(w) + f ′(w)(x− w)

and

f(x̂) ≥ f(w) + f ′(w)(x̂− w).

So

θf(x) + (1− θ)f(x̂) ≥ f(w) + f ′(w)(θ(x− w) + (1− θ)(x̂− w)).

But a calculations shows that

θ(x− w) + (1− θ)(x̂− w) = 0.

Thus θf(x) + (1− θ)f(x̂) ≥ f(w) = f(θx+ (1− θ)x̂). This is (C1).
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2. Suppose now that f is twice continuously differentiable. We will show

(C2) holds if and only if (C3) holds. Assume (C2). Then{
f(x) + f ′(x)(w − x) ≤ f(w)

f(w) + f ′(w)(x− w) ≤ f(x).

Add, to get

(f ′(w)− f ′(x))(w − x) ≥ 0

for all x,w ∈ R. Now put w = x+ θy for θ > 0:(
f ′(x+ θy)− f(x)

θ

)
y ≥ 0.

Send θ → 0, to deduce that f ′′(x)y2 ≥ 0 for all y ∈ R and thus f ′′(x) ≥ 0.

This is (C3).

Now assume (C3). Then for all x, y

f(y) = f(x) +

∫ y

x
f ′(t) dt

= f(x)−
∫ y

x
(y − t)′f ′(t) dt

= f(x) + f ′(x)(y − x) +

∫ y

x
(y − t)f ′′(t) dt.

If y > x,
∫ y
x (y − t)f ′′(t) dt ≥ 0 as f ′′(t) > 0. If y < x, then we have∫ y

x (y − t)f ′′(t) dt =
∫ x
y (t − y)f ′′(t) dt ≥ 0, since both the factors of the last

integrand are positive. So in both cases, f(y) ≥ f(x) + f ′(x)(y − x). This

is (C2). �

The condition (C3) is especially convenient for checking if a given func-

tion is convex or not. But the graphs of convex functions can have corners,

and so convex functions need not be twice, or even once, continuously dif-

ferentiable. However, they are always continuous:

THEOREM 3.2.2 (Convex functions are continuous). If f : R → R
is convex, then

f is continuous.

REMARK. We will later extend our definition of convexity to allow for

functions f : R→ (−∞,∞], which may take on the value ∞. Simple exam-

ples show that such convex functions need not be continuous. So perhaps a

better title for Theorem 3.2.2 is “finite-valued convex functions are contin-

uous”. �
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Proof. 1. First we show that f is bounded on each interval [a, b] of finite

length. For each a ≤ x ≤ b, we can write x = θa+ (1− θ)b where 0 ≤ θ ≤ 1.

Therefore

f(x) ≤ θf(a) + (1− θ)f(b) ≤ max{|f(a)|, |f(b)|}.

Now if a+b
2 ≤ x ≤ b, then a+b

2 = θx + (1 − θ)a for θ = b−a
2(x−a) . Then

1
2 ≤ θ ≤ 1 and convexity implies

f(a+b2 ) ≤ θf(x) + (1− θ)f(a).

Hence

f(x) ≥ 1

θ

(
f(a+b2 )− (1− θ)f(a)

)
≥ −2

(
|f(a+b2 )|+ |f(a)|

)
,

since 1
θ ≤ 2. Likewise, if a ≤ x ≤ a+b

2 , we have

f(x) ≥ −2
(
|f(a+b2 )|+ |f(b)|

)
.

Therefore

(3.19) sup
[a,b]
|f | ≤ 4 max{|f(a)|, |f(a+b2 )|, |f(b)|} <∞.

This proves assertion (i).

2. Now assume [a, b] = [−1, 1] and let −1 ≤ x < y ≤ 1. Then y =

θx+ (1− θ)2 for θ = 2−y
2−x . Thus

f(y) ≤ θf(x) + (1− θ)f(2),

and so

f(y)− f(x) ≤ (1− θ)(f(2)− f(x)) = (y−x)
f(2)− f(x)

2− x
≤ 2|y−x| sup

[−2,2]
|f |.

Similarly, we have x = θy + (1− θ)(−2) for θ = x+2
y+2 . Consequently,

f(x) ≤ θf(y) + (1− θ)f(−2);

whence

f(x)−f(y) ≤ (1−θ)(f(−2)−f(y)) = (y−x)
f(−2)− f(y)

2 + y
≤ 2|y−x| sup

[−2,2]
|f |.

Putting together the above estimates, we see that

(3.20) |f(y)− f(x)| ≤ 2|y − x| sup
[−2,2]

|f | (x, y ∈ [−1, 1]).

Since sup[−2,2] |f | <∞, this inequality implies f is continuous on [−1, 1].

Now consider any finite interval [a, b] and set f̂(x) = f
(
b−a
2 x+ a+b

2

)
.

Applying estimate (3.20) to the convex function f̂ on [0, 1], we conclude

that f is continuous on [a, b]. �
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3.2.2. Convex functions of more variables.

DEFINITION. f : Rn → R is called convex if

(C1) f(θx+ (1− θ)x̂) ≤ θf(x) + (1− θ)f(x̂).

for all x, x̂ ∈ Rn, 0 ≤ θ ≤ 1.

REMARKS. We see that f is a convex function if and only if its epigraph

E =

{[
x

y

]
| y ≥ f(x), x ∈ Rn

}
⊂ Rn+1

is a convex set. And, as before, it follows by induction that if f : Rn → R is

convex, then

(3.21) f

(
m∑
i=1

θixi

)
≤

m∑
i=1

θif(xi)

for all positive integers m, all x1, . . . , xm ∈ Rn, and all θ1, . . . , θm ≥ 0 such

that
∑m

i=1 θi = 1. �

Our calculations in the previous section let us fairly easily derive various

useful characterizations of multivariable convex functions.

THEOREM 3.2.3 (Equivalent characterization of multivariable con-

vexity).

(i) If f : Rn → R is continuously differentiable, then f is convex if and

only if

(C2) f(x) +∇f(x) · (x̂− x) ≤ f(x̂)

for all x, x̂ ∈ Rn.

(ii) If f : Rn → R is twice continuously differentiable, then f is convex

if and only if

(C3) ∇2f(x) � 0

for all x ∈ Rn.

REMARK. Recall from page 4 that ∇2f(x) � 0 means

yT∇2f(x)y =

n∑
i,j=1

∂2f(x)

∂xi∂xj
yiyj ≥ 0.

for all y ∈ Rn. �
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GEOMETRIC INTERPRETATION. Now the condition (C2) means

that the graph of the convex function lies above each of its tangent hyper-

planes. �

Proof. 1. We first claim that f : Rn → R is convex if and only if

φ(t) = f(x+ ty)

is a convex function of t for all x, y ∈ Rn.

To see this, assume f is convex. Select x, y ∈ Rn, 0 ≤ θ ≤ 1, t, t̂ ∈ R
and let

z = x+ ty, ẑ = x+ t̂y.

Then

f(θz + (1− θ)ẑ) ≤ θ f(z)︸︷︷︸
φ(t)

+(1− θ) f(ẑ)︸︷︷︸
φ(t̂)

Observe also that

f(θz + (1− θ)ẑ) = f
(
x+ (θt+ (1− θ)t̂)y

)
= φ(θt+ (1− θ)t̂).

Thus φ is convex.

Conversely, let 0 ≤ θ ≤ 1, x, x̂ ∈ Rn. Let φ(t) = f(x̂+ t(x− x̂)). If φ is

convex, then

f(θx+ (1− θ)x̂) = φ(θ) = φ ((1− θ)0 + θ · 1)

≤ (1− θ)φ(0) + θφ(1)

= (1− θ)f(x̂) + θf(x).

So if we know that t 7→ φ(t) = f(x + ty) is convex for all x, y, then f is

convex.

2. Now the one dimensional version of (C2) implies that

φ(t) + φ′(t)(t̂− t) ≤ φ(t̂) for all t, t̂ ∈ R,

for the convex function φ(t) = f(x + ty). Also φ′(t) = ∇f(x + ty) · y. Let

t = 0, t̂ = 1 above, to get

f(x) +∇f(x) · y ≤ f(x+ y).

Now put x̂ = x+ y; then

f(x) +∇f(x) · (x̂− x) ≤ f(x̂).

This is (C2) for the function f .

3. The one-dimensional version of (C3) for convex φ says

φ′′(t) ≥ 0,
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where φ(t) = f(x+ ty). Then

φ′(t) = ∇f(x+ ty) · y, φ′′(t) = yT∇2f(x+ ty)y.

Let t = 0, so that

yT∇2f(x)y ≥ 0 for all y ∈ Rn.

This is (C3) for f . �

Checking (C3) is usually the best way of determining if a given twice-

differentiable function f : Rn → R is convex or not. But the graph of a

general convex function f can have corners, edges, etc and so f need not be

differentiable. However, as in one dimension, a real-valued convex function

is always continuous:

THEOREM 3.2.4 (Multivariable convex functions are continuous).

If f : Rn → R is convex, then

f is continuous.

Proof. 1. Write

Q(k) = [−k, k]× · · · × [−k, k] ⊂ Rn

for the cube centered at the origin, with sides of length 2k parallel to the

coordinate axes.

We will first show that f restricted to Q(k) is bounded. This follows by

induction, the case n = 1 being our earlier Theorem 3.2.2. Then for n ≥ 2

we see from the induction hypothesis that f is bounded on each of the three

n− 1 dimensional boxes

Qi = [−k, k]× · · · × [−k, k]× {xn = ci}

for c1 = −k, c2 = 0, c3 = k.

Now for each point x′ ∈ [−k, k] × · · · × [−k, k] ⊂ Rn−1, the function

g(xn) = f(x′, xn) is convex. Thus estimate (3.19) from the proof of Theorem

3.2.2 shows that

sup
Q(k)
|f | ≤ 4 max

{
sup
Q1

|f |, sup
Q2

|f |, sup
Q3

|f |

}
<∞.

2. Fix any two points x, y ∈ Rn, with 0 < |x−y| ≤ 1. Define the convex

function φ(t) = f(x + tz) for z = y−x
|y−x| According to (3.20) from the proof

of Theorem 3.2.2, we have the estimate

|φ(t)− φ(0)|
|t|

≤ 2 max
|s|≤2
|φ(s)|.
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Let t = |y − x|; then the foregoing implies

|f(y)− f(x)|
|y − x|

≤ 2 max
|z−x|≤2

|f(z)|.

Consequently, f is continuous at x. �

3.2.3. Subdifferentials.

Our calculations above show also that if f : Rn → R is convex and if f

is differentiable at x, then

f(x) +∇f(x) · (x̂− x) ≤ f(x̂)

for all x̂ ∈ Rn. We now extend this inequality, even if f is not differentiable

at x:

DEFINITION. Let f : Rn → R be convex. For each x ∈ Rn, we define

(3.22) ∂f(x) = {r ∈ Rn | f(x) + r · (x̂− x) ≤ f(x̂) for all x̂ ∈ Rn} .

This set is called the subdifferential of f at x.

x

A multivalued subdifferential

GEOMETRIC INTERPRETATION. The affine function

g(y) = a · y + b

is called a supporting hyperplane to the graph of f at x provided g ≤ f
on Rn and g(x) = f(x).

The subdifferential ∂f(x) therefore records the “slopes” of all the sup-

porting hyperplanes to the graph of f at x. If f is differentiable at x, then

the unique supporting hyperplane is the tangent hyperplane and

∂f(x) = {∇f(x)}.
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But in general ∂f(x) may contain more than one element, since the graph

of f may have a corner or edge; and thus there may be more than one

supporting hyperplane at x. �

EXAMPLES. (i) Let n = 1 and f(x) = |x|. Then

∂f(x) =


{1} if x > 0

[−1, 1] if x = 0

{−1} if x < 0.

(ii) Now assume n > 1 and f(x) = |x|. Then

∂f(x) =

{
{ x|x|} if x 6= 0

B(0, 1) if x = 0.

To verify the last statement, observe that r ∈ ∂f(0) means

|0|+ r · (x− 0) ≤ |x| for all x ∈ Rn.

This is valid precisely when |r| ≤ 1. �

THEOREM 3.2.5. Let f : Rn → R be convex. Then for each x ∈ Rn,

(3.23) ∂f(x) is a closed and convex set.

Proof. 1. The set ∂f(x) is clearly convex. Assume now

{rk}∞k=1 ⊆ ∂f(x) and r0 = lim
k→∞

rk.

Then for each k and each x̂

f(x) + rk · (x̂− x) ≤ f(x̂).

Let k →∞ to deduce that

f(x) + r0 · (x̂− x) ≤ f(x̂)

for each x̂ ∈ Rn, and hence r0 ∈ ∂f(x). Consequently, ∂f(x) is closed. �

Next is the important assertion that a finite-valued convex function on

Rn has a non-empty subdifferential at every point.

THEOREM 3.2.6. Let f : Rn → R be convex. Then for each x ∈ Rn,

(3.24) ∂f(x) is non-empty.
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Proof. 1. Select any point x ∈ Rn. We will show ∂f(x) 6= ∅.
The epigraph E is convex and closed (since f is continuous). Let k be a

positive integer. Then

ek =

[
x

f(x)− 1
k

]
6∈ E.

According then to the Separating Hyperplane Theorem, there exists a hy-

perplane

ak · z + dk

in Rn+1 that strictly separates ek and E. So there exist

ak =

[
bk

ck

]
,

with bk ∈ Rn and ck ∈ R, and dk ∈ R, such that

ak · ek + dk < 0,(3.25)

ak · z + dk > 0 (z ∈ E).(3.26)

2. Now (3.25) says

(3.27) bk · x+ ck
(
f(x)− 1

k

)
+ dk < 0.

Also, for any x̂ ∈ Rn we have

z =

[
x̂

f(x̂)

]
∈ E,

and therefore (3.26) implies

(3.28) bk · x̂+ ckf(x̂) + dk > 0.

Multiply (3.27) by −1 and add to (3.28):

(3.29) bk · (x̂− x) + ck
(
f(x̂)− f(x) +

1

k

)
> 0

for x̂ ∈ Rn. If we let x̂ = x, (3.29) says ck

k > 0 and thus ck > 0. Therefore

(3.29) implies

(3.30) f(x̂) +
1

k
≥ rk · (x̂− x) + f(x)

for all x̂ ∈ Rn, where

rk = − 1

ck
bk.
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3. We now claim that the sequence {rk}∞k=1 ⊂ Rn is bounded. To see

this, let x̂ = x+ rk

|rk| in (3.30) (if rk 6= 0):

f

(
x+

rk

|rk|

)
+

1

k
≥ |rk|+ f(x).

Hence

|rk| ≤ 1 + max
y∈B(x,1)

|f(y)|+ |f(x)| = M

for all k = 1, 2, . . ..

According now to the Bolzano-Weierstrass Theorem, there then exists a

subsequence such that

r = lim
j→∞

rkj exists.

Now let k = kj →∞ in (3.30):

f(x̂) ≥ r · (x̂− x) + f(x)

for all x̂ ∈ Rn. This says that r ∈ ∂f(x). �

REMARK (Infinite-valued convex functions). It is often useful to

allow convex functions f to take the value ∞. We say

(i) f : Rn → (−∞,∞] is convex if

f (θx+ (1− θ)x̂) ≤ θf(x) + (1− θ)f(x̂);

(ii) f : Rn → (−∞,∞] is lower semicontinuous if

lim
k→∞

xk = x0 implies f(x0) ≤ lim inf
k→∞

f(xk).

Observe that if f : Rn → (−∞,+∞] is convex and lower semicontinuous,

its epigraph

E =

{[
x

y

]
| y ≥ f(x), f(x) <∞

}
is convex and closed. �

IMPORTANT REMARK. If f : Rn → (−∞,∞] is convex and lower

semicontinuous, it is possible that ∂f(x) = ∅, even if f(x) <∞.

Here is an example:

f(x) =


∞ (x < −1)

−(1− x2)1/2 (−1 ≤ x ≤ 1)

∞ (x > 1),

for which ∂f(±1) = ∅. �
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REMARK. However, the proof of Theorem 3.2.6 can be modified to show

that if f : Rn → (−∞,∞] is convex and lower semicontinuous, and if f is

finite-valued on an open, convex set U ⊂ Rn, then

(3.31) ∂f(x) 6= ∅ (x ∈ U).

We omit a full discussion of this observation, other than to note that if

the ball B(x, 2r) lies in U , then estimates from earlier proofs show that f

restricted to the smaller ball B(x, r) is bounded and continuous. �

3.2.4. Dual convex functions.

For this section, assume f : Rn → R is convex, with

(3.32) lim
|x|→∞

f(x)

|x|
= +∞.

This is called a “super-linear growth” condition.

DEFINITION. For y ∈ Rn, we define

(3.33) f∗(y) = max
x∈Rn

{x · y − f(x)} .

We call f∗ the convex dual function (or Legendre transform) of f .

EXAMPLES. (i) Let f(x) = x2/2 for x ∈ R. Then

f∗(y) = max
x

(
xy − x2

2

)
=
y2

2
.

(ii) Let f(x) = |x|p/p, where 1 < p <∞. We claim that

f∗(y) =
|y|q

q
where

1

p
+

1

q
= 1.

To confirm this, we write

f∗(y) = max
x

(
xy − |x|

p

p

)
For fixed y, let g(x) = xy − |x|p/p. Then g′(x) = y − |x|p−1 sgn(x). So

0 = g′(x) when y = |x|p−1 sgn(x), or equivalently x = |y|1/(p−1) sgn(y).

Consequently

f∗(y) =
(
|y|1/(p−1) sgn(y)

)
y −

∣∣|y|1/(p−1) sgn(y)
∣∣p

p

= |y|
1

p−1
+1 − |y|

p
p−1

p
=

(
1− 1

p

)
|y|p/(p−1)
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=
|y|q

q
,

where q = p
p−1 (and so 1

p + 1
q = 1). �

LEMMA 3.2.1. For all x, y ∈ Rn we have

(3.34) x · y ≤ f(x) + f∗(y).

This is the Fenchel–Young inequality.

THEOREM 3.2.7 (Dual convex functions).

(i) The function f∗ : Rn → R is convex.

(ii) lim|y|→∞
f∗(y)
|y| = +∞

(iii) Furthermore

(3.35) f∗∗ = f.

Proof. 1. We have

f∗ (θy + (1− θ)ŷ) = max
x

((θy + (1− θ)ŷ) · x− f(x))

= max
x

(θ(y · x− f(x)) + (1− θ)(ŷ · x− f(x)))

≤ θmax
x

(y · x− f(x)) + (1− θ) max
x

(ŷ · x− f(x))

= θf∗(y) + (1− θ)f∗(ŷ).

2. Recall that f(x) + f∗(y) ≥ x · y for all x, y. Fix y 6= 0, µ > 0 and let

x = µy/|y|. Then

f∗(y) ≥
(
µ
y

|y|

)
· y − f

(
µ
y

|y|

)
≥ µ|y| − max

B(0,µ)
f.

So
f∗(y)

|y|
≥ µ− 1

|y|
max
B(0,µ)

f,

and thus

lim inf
|y|→∞

f∗(y)

|y|
≥ µ

for all µ > 0.

3. Since f∗(y) + f(x) ≥ x · y, we have

(3.36) f(x) ≥ max
y

(x · y − f∗(y)) = f∗∗(x).

Conversely, recall from Theorem 3.2.6 that ∂f(x) 6= ∅. Select r ∈ ∂f(x);

then

f(z) ≥ f(x) + r · (z − x)
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for all z ∈ Rn. Consequently,

r · x− f(x) = max
z

(r · z − f(z)) = f∗(r);

and so

f∗∗(x) = max
y

(x · y − f∗(y)) ≥ x · r − f∗(r) = f(x).

This and (3.36) imply f∗∗ = f . �

REMARK. This proof depends upon Theorem 3.2.6, which in turn de-

pends upon the Separating Hyperplane Theorem. So again, as on page 85,

we see that separating hyperplanes imply convex duality. �

THEOREM 3.2.8 (Subdifferentials and dual functions). For all

points x, y ∈ Rn, we have

x · y = f(x) + f∗(y)

if and only if

y ∈ ∂f(x)

if and only if

x ∈ ∂f∗(y).

REMARK. This means in particular that if both ∇f(x) and ∇f∗(y) exist,

then

y = ∇f(x) if and only if x = ∇f∗(y).

Thus (∇f)−1 = ∇f∗. �

Proof. 1. Assume x · y = f(x) + f∗(y). Then

x · y − f(x) = f∗(y) ≥ y · z − f(z)

for all z. Hence

f(z) ≥ y · (z − x) + f(x)

for all z ∈ Rn. This implies y ∈ ∂f(x).

2. Conversely, if y ∈ ∂f(x), we have

f(z) ≥ y · (z − x) + f(x)

for all z and so

x · y − f(x) ≥ y · z − f(z)

for all z. Maximizing over z gives

x · y ≥ f(x) + f∗(y).

Since we always have x · y ≤ f(x) + f∗(y), we have equality.
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3. The proof that x · y = f(x) + f∗(y) if and only if x ∈ ∂f∗(y) is

similar. �

REMARK. If f : Rn → (−∞,∞] is convex, lower semicontinuous, f 6≡ ∞,

we can still define the dual function

f∗(y) = sup
x∈Rn

{x · y − f(x)} .

This definition also makes sense if f is finite-valued, but does not satisfy

the superlinear growth condition (3.32). For example, let n = 1 and f(x) =

|x|. Then

f∗(y) =

{
0 −1 ≤ y ≤ 1

+∞ otherwise.

�

3.2.5. Applications.

a. Gradient flows. Suppose we are given a function Φ : Rn → R.

Consider next the system of ODE

(3.37)

{
ẋ = −∇Φ(x) (t ≥ 0)

x(0) = x0

which describes a “downhill” gradient flow.

THEOREM 3.2.9. Assume Φ : Rn → R is convex and x solves (3.37).

(i) Then

φ(t) = Φ(x(t)) is nonincreasing and convex

(ii) If y solves

(3.38)

{
ẏ = −∇Φ(y) (t ≥ 0)

y(0) = y0,

then

(3.39) |x(t)− y(t)| ≤ |x(s)− y(s)| for all 0 ≤ s < t.

Proof. 1. We calculate

φ̇ = ∇Φ(x) · ẋ = −|∇Φ(x)|2 ≤ 0;

and

φ̈ = − d

dt
|∇Φ(x)|2 = −2∇Φ(x) · ∇2Φ(x)ẋ

= 2∇Φ(x)T∇2Φ(x)∇Φ(x) ≥ 0.
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2. If y solves (3.38), we have

d

dt
|x− y|2 = 2(x− y) · (ẋ− ẏ) = −2(x− y) · (∇Φ(x)−∇Φ(y)) ≤ 0.

�

b. Inequalities. Many useful inequalities in mathematics are conse-

quences of convexity:

THEOREM 3.2.10. (Jensen’s inequality) Assume f : R→ R is convex.

Then for all −∞ < a < b <∞ and all integrable functions g : [a, b]→ R we

have the inequality

(3.40) f

(
1

b− a

∫ b

a
g(x) dx

)
≤ 1

b− a

∫ b

a
f(g(x)) dx.

Proof. Let y = 1
b−a

∫ b
a g(x) dx and select r ∈ ∂f(y). Then

f(y) + r(g(x)− y) ≤ f(g(x)) (a ≤ x ≤ b).

Now integrate in x over the interval [a, b] and divide by b− a. �

EXAMPLE. If a1, a2, . . . , am > 0, then

(3.41) (a1a2 · · · am)
1
m ≤ a1 + a2 + · · ·+ am

m
.

This is the inequality of the geometric and arithmetic means.

To prove this, we take f(x) = ex and

g(x) =


log a1 (0 ≤ x < 1

m)

log a2 ( 1
m ≤ x <

2
m)

...

log am (m−1m ≤ x ≤ 1).

Then Jensen’s inequality implies

(a1a2 · · · am)
1
m = e

log a1+···+log am
m = f

(∫ 1

0
g dx

)
≤
∫ 1

0
f(g) dx =

a1 + a2 + · · ·+ am
m

.

�
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EXAMPLE. If p, q > 1 satisfy

1

p
+

1

q
= 1,

then

(3.42) ab ≤ ap

p
+
bq

q
.

for all a, b > 0. This is Young’s inequality.

To see this, we again take f(x) = ex and now

g(x) =

{
p log a (0 ≤ x < 1

p)

q log b (1p ≤ x ≤ 1).

Then Jensen’s inequality implies

ab = e
p log a

p
+ q log b

q = f

(∫ 1

0
g dx

)
≤
∫ 1

0
f(g) dx =

ap

p
+
bq

q
.

This is also a special case of the general Fenchel–Young inequality. �



Chapter 4

NONLINEAR
OPTIMIZATION

In this chapter we examine minimization problems with inequality con-

straints and study when and how Lagrange multipliers can be used to char-

acterize minimizers.

4.1. Inequality constraints

Assume f, h1, . . . , hp : Rn → R are continuously differentiable.

NOTATION. As usual, we write

h =

h1...
hp


and

∇h =

(∇h1)T
...

(∇hp)T

 =


∂h1
∂x1

. . . ∂h1
∂xn

...
. . .

...
∂hp
∂x1

. . .
∂hp
∂xn

 . �

We study in this section the constrained optimization problem to find

x0 ∈ Rn to

(MIN∗)

{
minimize f(x),

subject to h(x) ≤ 0.

111
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The requirements that hj(x) ≤ 0 for j = 1, . . . , p are inequality con-

straints; the j-th constraint is active if hj(x) = 0. A point x is feasible

for (MIN*) if h(x) ≤ 0.

A basic question is how to characterize x0 solving (MIN*).

4.1.1. Constraint qualification.

Suppose hereafter x0 solves (MIN*). Our plan is to make a first variation

calculation, but for this we need to be careful in designing an appropriate

curve of variations staying within the feasible region.

NOTATION. Write

J = {j ∈ {1, . . . , p} | hj(x0) = 0} .

These are the indices of the active constraints for x0.

NOTATION. Below we write “o(t)” to denote any vector function r(t)

such that

lim
t→0+

|r(t)|
t

= 0.

DEFINITION. We say the constraint qualification condition (CQ)

holds at x0 if for each vector y ∈ Rn satisfying

(4.1) y · ∇hj(x0) ≤ 0 (j ∈ J),

there exists a continuous curve {x(t) | 0 ≤ t < t0} for some t0 > 0 such that

(4.2) h(x(t)) ≤ 0 (0 ≤ t < t0);

and

(4.3) x(t) = x0 + ty + o(t) as t→ 0+.

The condition (4.2) says that x(t) is feasible for all 0 ≤ t < t0. And

(4.3) means that the right hand derivative x′(0) exists, with

x′(0) = y.

GEOMETRIC INTERPRETATION. We must be careful not to leave

the feasible set when we take our variations; and this is potentially problem-

atic if the j-th constraint is active, so that hj(x0) = 0. But if y ·∇hj(x0) ≤ 0,

then our moving away from x0 along the curve x(t) in the direction y will

not increase hj(x(t)), at least to first-order.
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So (CQ) is the reasonable requirement that if y · ∇hj(x0) ≤ 0 for all the

active constraints at x0, there is indeed a curve x(t) of feasible variations

with x′(0) = y. (But see Franklin’s book [F1] for an example showing that

(CQ) can fail.) �

4.1.2. Karush-Kuhn-Tucker conditions.

THEOREM 4.1.1. Let x0 solve (MIN*) and suppose the constraint qual-

ification condition (CQ) holds at x0.

Then there exist real numbers µ10, . . . , µ
p
0 such that

(4.4) ∇f(x0) +

p∑
j=1

µj0∇hj(x0) = 0 .

Furthermore, the vector µ0 = [µ10, . . . , µ
p
0]
T satisfies

(4.5) µ0 ≥ 0, µ0 · h(x0) = 0.

REMARK. We call (4.4) and (4.5) the Karush-Kuhn-Tucker (KKT)

conditions. Observe that we can also write (4.4) as

∇f(x0) +∇h(x0)
Tµ0 = 0.

�

INTERPRETATION. We interpret µj0 as the Lagrange multiplier for the

constraint hj(x0) ≤ 0. So for our inequality constrained problem (MIN*)

we are asserting both that Lagrange multipliers exist and that they are

nonnegative.
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In addition, if hj(x0) < 0 for some index j, that constraint is inactive

and so the corresponding Lagrange multiplier µj0 equals zero. This is a

complementary slackness condition. �

Proof. 1. Assume the vector y satisfies (4.1). Let {x(t) | 0 ≤ t < t0} be the

corresponding curve, whose existence is assured according to (CQ).

Write φ(t) = f(x(t)). Then

φ(0) = f(x0) ≤ f(x(t)) = φ(t) (0 ≤ t ≤ t0),

since x0 solves (MIN*). Thus φ has a minimum at t = 0 and hence

φ′(0) ≥ 0.

Now

φ′(0) = ∇f(x0) · x′(0) = ∇f(x0) · y,
and therefore

∇f(x0) · y ≥ 0

for all y satisfying (4.1).

So we have shown that

(4.6) y · ∇hj(x0) ≤ 0 (j ∈ J) implies y · ∇f(x0) ≥ 0.

2. Now recall the Farkas alternative:

(i) Ax = b, x ≥ 0 has a solution x, or

(ii) AT y ≥ 0, y · b < 0 has a solution y,

but not both. We apply this to

A = −
[
∇hj1(x0) ∇hj2(x0) . . . ∇hjk(x0)

]︸ ︷︷ ︸
columns

, b = ∇f(x0),

where J = {j1, j2, . . . , jk}. Then assertion (4.6) says

AT y ≥ 0 implies y · b ≥ 0

and therefore Farkas (ii) fails.

Consequently Farkas (i) holds: there exist σj ≥ 0 (j ∈ J) such that

(4.7) −
∑
j∈J

σj∇hj(x0) = ∇f(x0).

Define µ0 ∈ Rp by

µj0 =

{
σj j ∈ J
0 j 6∈ J ;
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then µ0 ≥ 0, µ0 · h(x0) = 0 and

∇f(x0) +

p∑
j=1

µj0∇hj(x0) = 0.

�

4.1.3. When does (CQ) hold?

The above proof is elegant, but it may be far from clear for particular

problems if the constraint qualification condition is valid. We discuss next

two important cases.

a. Linear inequality and equality constraints

THEOREM 4.1.2. If the functions {hj}pj=1 are linear (or affine) functions

of x, then (CQ) holds for each point x0.

Proof. Let y satisfy the condition (4.1) in (CQ). We will use the straight

line x(t) = x0 + ty for 0 ≤ t ≤ t0. So if hj(x) = a · x+ b, then

hj(x(t)) = a · x(t) + b = a · (x0 + ty) + b.

Now ∇hj = a, and thus the condition (4.1) in (CQ) says

y · a ≤ 0.

So if hj(x0) = 0 (that is, if j ∈ J), then

hj(x(t)) = a · x0 + b︸ ︷︷ ︸
hj(x0)=0

+t a · y︸︷︷︸
≤0

≤ 0

for all t ≥ 0. If on the other hand hj(x0) < 0, then hj(x(t)) < 0 for small

t > 0, by continuity. �

EXAMPLE. (Linear programming redux) Remember the standard

linear programming problems:

(P∗)


min c · x,

subject to

Ax ≥ b, x ≥ 0.

(D∗)


max b · y,

subject to

AT y ≤ c, y ≥ 0.

Now (P*) is equivalent to (MIN*) for

f(x) = c · x, h =

[
−x

b−Ax

]
.
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Since the inequality constraints are linear, (CQ) holds according to The-

orem 4.1.2. Hence we can find

µ0 =

[
λ0
y0

]
∈ Rn+m

such that

(4.8) ∇f +∇(λ0 · (−x)) +∇(y0 · (b−Ax)) = 0

at x0 and

(4.9) λ0, y0 ≥ 0, λ0i = 0 if x0i > 0, y0j = 0 if (Ax0 − b)j > 0

for i = 1, . . . , n, j = 1, . . . ,m.

Now (4.8) says

c = λ0 +AT y0.

Then AT y0 ≤ c, as λ0 ≥ 0. Since also y0 ≥ 0, we see that y0 is feasible for

the dual problem (D*). In addition, (4.9) tells us that

y0 · (Ax0 − b) = 0, x0 · (AT y0 − c) = −x0 · λ0 = 0.

Therefore

b · y0 = y0 ·Ax0 = AT y0 · x0 = x0 · c

and so y0 is an optimal solution of (D*).

We can thus interpret the components of an optimal solution y0 of the

dual problem (D*) as Lagrange multipliers for the primal problem (P*).

More precisely, the entries of y0 are Lagrange multipliers corresponding to

the constraints Ax ≥ b. �

b. Regular equality constraints

Recall that

J = {j ∈ {1, . . . , p} | hj(x0) = 0}

are the indices for the active constraints at x0.

DEFINITION. We say that x0 is regular for (MIN*) if the vectors

{∇hj(x0)}j∈J are linearly independent in Rn.

THEOREM 4.1.3. If x0 is regular for (MIN*), then (CQ) holds at x0.

Proof. 1. Upon reindexing if necessary, we may assume that J = {1, . . . , k}
where k ≤ min{p, n}. Since x0 is regular, we can select vectors {ak+1, . . . , an}



4.1. Inequality constraints 117

so that the n× n matrix

(4.10) A(x) =



(∇h1)T
...

(∇hk)T
(ak+1)T

...

(an)T


is nonsingular for all x sufficiently close to x0.

2. Let y satisfy the condition (4.1) in (CQ); so that

y · ∇hj(x0) ≤ 0 (j = 1, . . . , k).

Define

e = A(x0)y;

then

(4.11) ej = ∇hj(x0) · y ≤ 0 (j = 1, . . . , k).

3. Next define the vector field

w(x) = A−1(x)A(x0)y = A−1(x)e

for x near x0; and solve the system of differential equations{
x′(t) = w(x(t)) (0 ≤ t < t1)

x(0) = x0.

According to standard ODE theory, there exists a unique solution.

We show next that this curve meets the requirements of the (CQ) con-

dition. Note first that

x′(0) = w(x(0)) = w(x0) = A−1(x0)A(x0)y = y;

consequently x(t) = x0 + ty+ o(t) as t→ 0. We assert also that h(x(t)) ≤ 0

for all small enough times t. To see this, first let j ∈ J = {1, . . . , k}. Then

hj(x0) = 0 and

hj(x(t))′ = ∇hj(x(t)) · x′(t)
= ∇hj(x(t)) ·w(x(t))

= ∇hj(x(t)) ·A−1(x(t))e

= ej ≤ 0,

according to (4.10) and (4.11). Therefore hj(x(t)) ≤ 0 for times 0 ≤ t < t1 if

j ∈ J . Furthermore, for indices j /∈ J , we have hj(x0) < 0; and consequently,
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by continuity, gj(x(t)) < 0 for 0 ≤ t < t0, provided we select 0 < t0 ≤ t1
small enough. �

4.2. More on Lagrange multipliers

Now we introduce a general minimization problem, with both inequality and

equality constraints, and show how to use the penalty method (introduced

in Chapter 1) to build Lagrange multipliers. This is an alternative to the

techniques introduced in the previous section.

NOTATION. Given f, g1, . . . , gm, h1, . . . , hp : Rn → R, we write

g =

 g1...
gm

 , h =

h1...
hp

 .
Our minimization problem for this section is to find x0 ∈ Rn to

(MIN∗∗)

{
minimize f(x), subject to

g(x) = 0, h(x) ≤ 0.

So there are m equality constraints and p inequality constraints.

4.2.1. F. John’s formulation.

THEOREM 4.2.1. Suppose that x0 solves the constrained optimization

problem (MIN**).

Then there exist real numbers γ0, λ
1
0, . . . , λ

m
0 , µ

1
0, . . . , µ

p
0, not all equal

to zero, such that

(4.12) γ0∇f(x0) +
m∑
k=1

λk0∇gk(x0) +

p∑
j=1

µj0∇hj(x0) = 0

and

(4.13) γ0 ≥ 0, µ0 ≥ 0, µ0 · h(x0) = 0.

NOTATION. Here

λ0 = [λ10 . . . λ
m
0 ]T , µ0 = [µ10 . . . µ

p
0]
T .

We can also write (4.12) as

γ0∇f(x0) +∇g(x0)
Tλ0 +∇h(x0)

Tµ0 = 0.

�
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TERMINOLOGY. (i) The formulas (4.12) and (4.13) are F. John’s con-

ditions.

(ii) When γ0 = 1, (4.12) and (4.13) become

(4.14) ∇f(x0) +
m∑
k=1

λk0∇gk(x0) +

p∑
j=1

µj0∇hj(x0) = 0

and

(4.15) µ0 ≥ 0, µ0 · h(x0) = 0.

To be consistent with previous notation, we will call (4.14) and (4.15) the

Karush-Kuhn-Tucker (KKT) conditions.

(iii) If γ0 6= 0, we can divide and convert (4.12) into the KKT form

(4.14). If instead γ0 = 0, we call it an abnormal multiplier. �

Proof. 1. For each α > 0 define

(4.16) Fα(x) := f(x) +
α

2
(|g(x)|2 + |h+(x)|2) +

1

2
|x− x0|2,

where for j = 1, . . . , p we define

h+j (x) =

{
hj(x) if hj(x) ≥ 0

0 if hj(x) ≤ 0.

Let B be the closed ball with center x0 and radius 1. According to the

Extreme Value Theorem there exists a point xα ∈ B such that

Fα(xα) = min
x∈B

Fα(x).

Thus Fα(xα) ≤ Fα(x0) and hence

(4.17) f(xα) +
α

2
(|g(xα)|2 + |h+(xα)|2) +

1

2
|xα − x0|2 ≤ f(x0),

since h(x0) ≤ 0,g(x0) = 0. Therefore {α|g(xα)|2}α>0 and {α|h+(xα)|2}α>0

are bounded, and consequently

(4.18) lim
α→∞

g(xα) = 0, lim
α→∞

h+(xα) = 0.

2. Next, use the Bolzano-Weierstrass Theorem to select a convergent

subsequence {xαj}∞j=1 of {xα}α>0 ⊂ B so that

xαj → x̄

as αj →∞, for some x̄ ∈ B. Then (4.17) implies

f(xα) +
1

2
|xα − x0|2 ≤ f(x0)
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and so

f(x̄) +
1

2
|x̄− x0|2 ≤ f(x0).

But (4.18) gives h(x̄) ≤ 0,g(x̄) = 0 and therefore x̄ is feasible. Hence

f(x0) ≤ f(x̄)

since x0 solves (MIN**). Therefore x̄ = x0. This is true for all convergent

subsequences xαj → x̄ and thus

(4.19) lim
α→∞

xα = x0.

3. Then for k large enough xα does not lie on the boundary of B . Thus

x 7→ Fα(x) has an unconstrained local minimum at xα and hence

0 = ∇Fα(xα)

= ∇f(xα) + α(∇g(xα)Tg(xα) +∇h+(xα)Th+(xα)) + xα − x0
= ∇f(xα) + α(∇g(xα)Tg(xα) +∇h(xα)Th+(xα)) + xα − x0,

since ∇h+j = ∇hj if h+j 6= 0.

We next multiply this identity by the constant

γα = (1 + α2|g(xα)|2 + α2|h+(xα)|2)−
1
2 > 0.

This gives

(4.20) 0 = γα∇f(xα) +∇g(xα)Tλα +∇h(xα)Tµα + γα(xα − x0)

for

λα = γααg(xα), µα = γααh+(xα) ≥ 0.

4. Observe that

(γα)2 + |λα|2 + |µα|2 = 1,

and therefore {(γα, λα, µα)}α>0 is bounded. Hence there is a sequence αj →
∞ such that

γαj → γ0 ≥ 0 in R, λαj → λ0 in Rm, µαj → µ0 ≥ 0 in Rp.

Then (γ0)
2 + |λ0|2 + |µ0|2 = 1, and consequently

(γ0, λ0, µ0) 6= (0, 0, 0).

Now let α = αj →∞ in (4.20), and recall (4.19) to prove (4.12).

5. Note next that h+(xα) ≥ 0 and therefore µ0 ≥ 0. Furthermore, if for

some index j we have

hj(x0) < 0,

then also

hj(xα) < 0
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if α is large enough. Consequently h+j (xα) = 0, and so µjα = 0 for all large

α. Thus µj0 = 0, and therefore µ0 · h(x0) = 0. This gives (4.13). �

REMARK. Like the earlier Theorem 1.3.1, this proof is based upon Mc-

Shane [MS]. �

4.2.2. More on constraint qualification.

The John conditions (4.12) and (4.13) are not particularly useful for an

abnormal multiplier γ0 = 0, since the resulting formula no longer involves

the function f we are minimizing.

We therefore are interested in finding various addition circumstances

(usually called constraint qualifications) that allow us to conclude that

γ0 > 0, in which case we can divide, convert to the case γ0 = 1, and thereby

establish the KKT conditions.

One circumstance for which we can take γ0 = 1 is when x0 is regular.

As before, let us write

J = {j ∈ {1, . . . , p} | hj(x0) = 0} .

for the indices of the active inequality constraints at x0.

DEFINITION. We say that x0 is regular for (MIN**) if the vectors

{∇hj(x0)}j∈J ∪ {∇gk(x0)}
m
k=1 are linearly independent in Rn.

THEOREM 4.2.2. Suppose that x0 solves the constrained optimization

problem (MIN**) and that x0 is regular.

Then there exist λ0 and µ0 such that the KKT conditions (4.14) and

(4.15) hold.

Proof. According to (4.12), we have

(4.21) 0 = γ0∇f(x0) +∇g(x0)
Tλ0 +∇h(x0)

Tµ0

for appropriate (γ0, λ0, µ0) 6= (0, 0, 0). If γ0 = 0, then

∇g(x0)
Tλ0 +∇h(x0)

Tµ0 = 0;

and hence (λ0, µ0) = (0, 0) since x0 is regular. But this is a contradiction,

and thus γ0 > 0. We can consequently divide the equation (4.21) by γ0, to

convert it into the form (4.14). �

Recall that if we drop the equality constraints, our problem is

(MIN∗)

{
minimize f(x),

subject to h(x) ≤ 0.
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DEFINITION. We say that x0 satisfies the Fromovitz–Mangasarian

constraint qualification condition for (MIN*) if there exists a vector

p ∈ Rn such that

(4.22) p · ∇hj(x0) < 0 (j ∈ J),

J as usual denoting the indices of the active constraints.

THEOREM 4.2.3. Suppose that x0 solves the constrained optimization

problem (MIN*) and x0 also satisfies the Fromovitz–Mangasarian condition.

Then there exists µ0 such that the KKT conditions (4.14) and (4.15)

hold (for g = 0).

Proof. Since we have no equality constraints, the John condition (4.12)

says

(4.23) 0 = γ0∇f(x0) +∇h(x0)
Tµ0

for (γ0, µ0) 6= (0, 0). So if γ0 = 0, then
p∑
j=1

µj0∇hj(x0) = 0.

But taking the inner product with p then gives the contradiction

0 =

p∑
j=1

µj0∇hj(x0) · p < 0,

the last inequality following from the Fromovitz–Mangasarian condition

since µ0 ≥ 0, µ0 6= 0. Hence γ0 > 0, and we can therefore convert into

the KKT form. �

4.3. Quadratic programming

The quadratic programming program is finding x0 ∈ Rn to

(Q)

{
minimize 1

2x
TCx+ c · x

subject to Ax = b, x ≥ 0,

where C is a symmetric n× n matrix.

The problem (Q) is of the form (MIN**) for

f(x) = 1
2x

TCx+ c · x, g = Ax− b, h = −x.

Because the constraints are linear, this problem is normal. Consequently

there exist λ0 ∈ Rm, µ0 ∈ Rn such that

(4.24) Cx+ c+∇(λ0 · (Ax− b)) +∇(µ0 · (−x)) = 0
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at x0 and

µ0 ≥ 0, µ0 · x0 = 0.

Therefore

Cx0 + c+ATλ0 − µ0 = 0.

Summarizing all the information above, we find that x0, λ0, µ0 satisfy

(4.25)


Ax0 = b, ATλ0 = −Cx0 − c+ µ0

x0 ≥ 0, µ0 ≥ 0

µ0 · x0 = 0.

REMARK. These are all linear conditions, except for the last line. It

turns out that it is therefore possible to modify the simplex algorithm to

handle quadratic programming problems: see Franklin [F1] for more. �

Application: non-zero sum matrix games. A remarkable appli-

cation of quadratic programming is to two-person, non-zero sum matrix

games. For this, we are given two payoff matrices

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 , B =

 b11 . . . b1n
...

. . .
...

bm1 . . . bmn

 .
As in our earlier discussion of games (see page 60), Player I selects his mixed

strategy from the set

P =

{
p ∈ Rm | pi ≥ 0,

m∑
i=1

pi = 1

}
and Player II selects hers from

Q =

q ∈ Rn | qj ≥ 0,

n∑
j=1

qj = 1

 .

The corresponding respective payoffs to Player I and Player II are

(4.26) p ·Aq =
∑
i,j

piaijqj , p ·Bq =
∑
i,j

pibijqj .

Each player wants to maximize his/her payoff.

DEFINITION. We say (p0, q0) is a mixed-strategy Nash equilibrium if

(N)

{
maxp∈P {p ·Aq0} = p0 ·Aq0
maxq∈Q {p0 ·Bq} = p0 ·Bq0.
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LEMMA 4.3.1. The pair (p0, q0) satisfies (N) if and only if

(4.27) (p0 ·Aq0)e ≥ Aq0
and

(4.28) (p0 ·Bq0)e ≥ BT p0,

where e = [1 . . . 1]T ∈ Rm in (4.27) and e = [1 . . . 1]T ∈ Rn in (4.28) .

Proof. 1. Assume (p0, q0) satisfies (N) and write p = [0 . . . 1 . . . 0]T , the 1

in the i-th slot. Then

p0 ·Aq0 ≥ p ·Aq0 = (Aq0)i (i = 1, . . . ,m).

This says (p0 ·Aq0)e ≥ Aq0. The proof that (p0 ·Bq0)e ≥ BT p0 is similar.

2. Conversely, assume (4.27) and (4.28) are valid. We take the dot

product of (4.27) with any p ∈ P , to deduce that p0 · Aq0 ≥ p · Aq0. This

gives the first line of (N) and the second line follows similarly. �

We introduce now the quadratic programming problem of finding (p0, q0, x0, y0)

to

(4.29)


maximize p · (A+B)q − (x+ y), subject to

Aq ≤ xe, BT p ≤ ye,
p · e = 1, q · e = 1,

p ≥ 0, q ≥ 0.

THEOREM 4.3.1. The pair (p0, q0) is a Nash equilibrium if and only if

(p0, q0, x0, y0) solves the maximization problem (4.29), where

(4.30) x0 = p0 ·Aq0, y0 = p0 ·Bq0.

Proof. 1. Suppose first (p0, q0) satisfies (N), and define x0, y0 by (4.30).

According to the Lemma, Aq0 ≤ x0e and BT p0 ≤ y0e; and consequently

(p0, q0, x0, y0) is feasible for the maximization problem (4.29). Now let

(p, q, x, y) be any other feasible solutions for (4.29). Then

p ·Aq ≤ x(e · p) = x, q ·BT p ≤ y(e · q) = y.

We add these inequalities, to learn that

p · (A+B)q ≤ x+ y.

But then

p · (A+B)q − (x+ y) ≤ 0 = p0 · (A+B)q0 − (x0 + y0).

Hence (p0, q0, x0, y0) is optimal for (4.29).
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2. Conversely, let (p0, q0, x0, y0) solve the quadratic maximization prob-

lem (4.29). Assume (p1, q1) satisfies (N) and define

x1 = p1 ·Aq1, y1 = p1 ·Bq1.

Then

p1 · (A+B)q1 − (x1 + y1) = 0.

Since (p0, q0, x0, y0) is optimal for (4.29), it must therefore be that

(4.31) 0 ≤ p0 · (A+B)q0 − (x0 + y0).

However, p0 ·Aq0 ≤ x0 and p0 ·Bq0 ≤ y0, and so the right hand side of (4.31)

is non-positive. Therefore

p0 ·Aq0 = x0, p0 ·Bq0 = y0.

Hence the constraints for (4.29) give

(p0 ·Aq0)e ≥ Aq0, (p0 ·Bq0)e ≥ BT p0.

The Lemma now implies that (p0, q0) is a Nash equilibrium. �

REMARK. This proof is from Barron [Ba] and is based upon ideas in

Lemke-Howson [L-H]. �





Chapter 5

CONVEX
OPTIMIZATION

We now make additional convexity assumptions, which will let us greatly

strengthen the theory from the previous chapter.

5.1. Variational inequalities

We start with a simple situation that clearly illustrates how convexity lets

us deduce global minimality from local, first variational information.

Let C ⊂ Rn be a convex set. We begin with the basic optimization

problem of finding x0 to

(C) minimize f(x), subject to x ∈ C.

THEOREM 5.1.1. (i) If f : Rn → R is continuously differentiable and x0
solves (C), then

(VI) ∇f(x0) · (x− x0) ≥ 0 for all x ∈ C.

(ii) Suppose also that f is convex. Then if x0 ∈ C satisfies (VI), x0
solves the minimization problem (C).

.

REMARK. We call (VI) a variational inequality, which is a form of

first variation for the constrained optimization problem (C).

Note carefully that assertion (ii) provides us with a first-order sufficient

condition that x0 be a solution of (C). �

127
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Proof. 1. Let x ∈ C. Then x0+t(x−x0) = tx+(1−t)x0 ∈ C for 0 ≤ t ≤ 1.

Thus if x0 solves (C), it follows that

φ(t) = f(x0 + t(x− x0))

has its minimum for 0 ≤ t ≤ 1 at t = 0. Therefore φ′(0) ≥ 0. But

φ′(t) = ∇f(x0 + t(x− x0)) · (x− x0) and hence

φ′(0) = ∇f(x0) · (x− x0) ≥ 0.

2. If f is convex and differentiable at x0, then

f(x) ≥ f(x0) +∇f(x0) · (x− x0)

for all x ∈ Rn. Since ∇f(x0) · (x − x0) ≥ 0 if x ∈ C according to (VI), we

have

f(x) ≥ f(x0)

for all x ∈ C. So x0 solves (C). �

INTERPRETATION. Note that Lagrange multipliers do not appear in

(VI), in spite of the general principle that “constraints cause Lagrange mul-

tipliers to appear.” This is sometimes an advantage, since it may be simpler

to study directly the inequalities in (VI). �

EXAMPLE. We can sometimes deduce the existence of Lagrange mul-

tipliers directly from the variational inequality. Consider for example the

problem {
minimize f(x),

subject to Ax = b,

where A is an m× n matrix and b ∈ Rm.

If x0 is a minimizer, then (VI) says ∇f(x0) · (x − x0) ≥ 0 for all x

such that Ax = b. Any such x has the form x = x0 + w for w ∈ N(A).

Consequently, ∇f(x0) · w ≥ 0 for all w ∈ N(A)). Replacing w by −w, we

see that in fact

∇f(x0) · w = 0 (w ∈ N(A)).

Therefore

∇f(x0) ∈ N(A)⊥ = R(AT ),

the second equality following from Theorem 3.1.6. So we can write

∇f(x0) +ATλ0 = 0

for some λ0 ∈ Rm. Then λ0 = [λ10 · · · λm0 ]T is the vector of Lagrange

multipliers for the constraint Ax = b (in accordance with Theorem 4.2.1).

�
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5.2. Convexity and Lagrange multipliers

The general theory in Chapter 4 provides the existence of Lagrange multi-

pliers for the problem of finding x0 ∈ Rn to

(MIN∗)

{
minimize f(x),

subject to h(x) ≤ 0,

with no convexity assumptions. However, the various constraint qualifica-

tion conditions introduced in Chapter 4 are often difficult to check in prac-

tice. This section presents an alternative approach, under the additional

(and strong) assumption that

(5.1) f, h1, . . . , hp : Rn → R are convex functions.

5.2.1. Sufficient condition for minimality. First we show that for con-

vex functions, the KKT conditions are sufficient for optimality:

THEOREM 5.2.1. Assume f, h1, . . . , hp : Rn → R are convex. Suppose

also that

h(x0) ≤ 0,

and that there exists µ0 ∈ Rp such that the KKT conditions hold:

(5.2) ∇f(x0) +

p∑
j=1

µj0∇hj(x0) = 0,

(5.3) µ0 ≥ 0, µ0 · h(x0) = 0.

Then x0 solves (MIN*).

Proof. Let C = {x ∈ Rn | h(x) ≤ 0} denote the feasible set, which is

convex since the functions h1, . . . , hp are convex.

Now (5.2) implies

(5.4) ∇f(x0) · (x− x0) +

p∑
j=1

µj0∇hj(x0) · (x− x0) = 0

for all x. Furthermore, if x ∈ C, we have

hj(x0) +∇hj(x0) · (x− x0) ≤ hj(x) ≤ 0.

We multiply by µj0 ≥ 0 and sum, to deduce from (5.3) that

p∑
j=1

µj0∇hj(x0) · (x− x0) ≤ 0.
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Then (5.4) implies ∇f(x0) · (x− x0) ≥ 0 for each x ∈ C. Consequently, the

convexity of f implies

f(x) ≥ f(x0) +∇f(x0) · (x− x0) ≥ f(x0),

and hence x0 is optimal for (MIN*). �

5.2.2. Slater’s condition.

We introduce next a new constraint qualification condition:

DEFINITION. We say that Slater’s condition for (MIN*) holds pro-

vided

(S) there exists a point x̄ ∈ Rn such that h(x̄) < 0.

THEOREM 5.2.2. Let x0 solve (MIN*) and that f, h1, . . . , hp : Rn → R
are convex. Assume further that Slater’s condition (S) holds.

(i) Then there exists µ0 ∈ Rp such that the KKT conditions (5.2) and

(5.2) hold.

(ii) Furthermore,

(5.5) x 7→ f(x) + µ0 · h(x) has a minimum at x0.

Proof. F. John’s formulation from Theorem 4.2.1 tells us that there exist

nonnegative numbers γ0, µ
1
0, . . . , µ

p
0, not all equal to zero, such that

(5.6) γ0∇f(x0) +

p∑
j=1

µj0∇hj(x0) = 0

and

(5.7) γ0 ≥ 0, µ0 ≥ 0, µ0 · h(x0) = 0.

We claim that

(5.8) γ0 6= 0.

To see this, suppose otherwise. Then µ0 6= 0 and
p∑
j=1

µj0∇hj(x0) = 0.

Hence
p∑
j=1

µj0∇hj(x0)(x̄− x0) = 0,

where x̄ satisfies (S). But convexity implies for j = 1, . . . , p that

hj(x0) +∇hj(x0) · (x̄− x0) ≤ hj(x̄).
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Therefore

µ0 · h(x0) ≤ µ0 · h(x̄) < 0

according to Slater’s condition, since µ0 ≥ 0, µ0 6= 0. This contradicts (5.7),

and thereby proves (5.8).

We as usual now divide (5.6) by γ0 > 0 to establish the KKT statements,

with possibly new constants µ10, . . . , µ
p
0. The assertion (5.5) follows from

convexity. �

5.2.3. Value functions.

This section provides another interpretation of Slater’s condition and its

relation to the value function, defined as follows:

DEFINITION. The value function associated with (MIN*) is defined

for a ∈ Rp by

(5.9)

v(a) =

{
infx∈Rn {f(x) | h(x) ≤ a} if {x ∈ Rn | h(x) ≤ a} 6= ∅
∞ if {x ∈ Rn | h(x) ≤ a} = ∅.

Henceforth, we assume the superlinear growth condition

(5.10) lim
|x|→∞

f(x)

|x|
=∞;

so that in particular

(5.11) inf
a∈Rn

v(a) > −∞.

LEMMA 5.2.1. Assume that the functions f, h1, . . . , hp : Rn → R are

convex. Then the value function

v : Rp → (−∞,∞]

is convex and lower semicontinuous.

Proof. 1. Select a, â ∈ Rp and 0 < θ < 1. We will show that

v(θa+ (1− θ)â) ≤ θv(a) + (1− θ)v(â).

This holds if either v(a) = ∞ or v(â) = ∞; and so we may assume

v(a), v(â) <∞. Select ε > 0 and then choose x, x̂ ∈ Rn so that

h(x) ≤ a, h(x̂) ≤ â

and

f(x) ≤ v(a) + ε, f(x̂) ≤ v(â) + ε.

Then, since f is convex,

f(θx+ (1− θ)x̂) ≤ θf(x) + (1− θ)f(x̂) ≤ θv(a) + (1− θ)v(â) + ε.
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Since

h(θx+ (1− θ)x̂) ≤ θh(x) + (1− θ)h(x̂) ≤ θa+ (1− θ)â,

it follows that

v(θa+ (1− θ)â) ≤ θv(a) + (1− θ)v(â) + ε.

Let ε→ 0. This proves v is convex.

2. To show v is lower semicontinuous, assume limk→∞ ak = a0, with

lim infk→∞ v(ak) <∞. Fix ε > 0 and then select points xk such that

(5.12) h(xk) ≤ ak, f(xk) ≤ v(ak) + ε (k = 1, . . . ).

Using the superlinear growth condition (5.10) and the Bolzano-Weierstrass

Theorem, we can extract a subsequence such that the limit

lim
j→∞

xkj = x0

exists and limj→∞ v(akj ) = lim infk→∞ v(ak). Then (5.12) gives

h(x0) ≤ a, f(x0) ≤ lim inf
k→∞

v(ak) + ε.

Hence v(a) ≤ lim infk→∞ v(ak) + ε for each ε > 0. �

The key point is now to understand when the subdifferential of v at 0 is

nonempty.

THEOREM 5.2.3. Let x0 solve (MIN*) and that f, h1, . . . , hp : Rn → R
are convex. Assume further that Slater’s condition (S) holds.

(i) Then

∂v(0) 6= ∅.

(ii) Consequently, there exists µ0 ∈ Rp such that the KKT conditions

(5.2) and (5.3) are valid.

INTERPRETATION. If the value function v is differentiable at 0, the

proof below shows that the Lagrange multiplier is

µ0 = −∇v(0).

So the Lagrange multiplier for the constraint h ≤ 0 is the negative of the

gradient of the value function at a = 0. (Recall our earlier introduction of

the value function on page 15.)

In general ∇v(0) need not exist, but Slater’s condition ensures that

∂v(0) 6= ∅. This discussion and the following proof are based upon Borwein-

Lewis [B-L]. �
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Proof. 1. In view of (S), the sets {x ∈ Rn | h(x) ≤ a} are nonempty for all

a ∈ Rm with |a| sufficiently small. This implies that v does not take on the

value ∞ in some ball centered at 0. Hence

∂v(0) 6= ∅

according to the Remark on page 105.

2. Select

−µ0 ∈ ∂v(0).

Then

(5.13) v(a) ≥ v(0)− µ0 · a = f(x0)− µ0 · a (a ∈ Rp).

Now if a ≥ 0, then clearly h(x0) ≤ 0 ≤ a. Thus

f(x0) ≥ v(a),

and hence (5.13) implies

f(x0) ≥ f(x0)− µ0 · a.

This inequality is valid for all a ≥ 0; whence µ0 ≥ 0.

3. Observe furthermore from the definition of the value function that

f(x) ≥ v(h(x)) (x ∈ Rn).

Consequently (5.13) implies

f(x) ≥ v(h(x)) ≥ f(x0)− µ0 · h(x).

Therefore

(5.14) f(x) + µ0 · h(x) ≥ f(x0) ≥ f(x0) + µ0 · h(x0) (x ∈ Rn),

since µ0·h(x0) ≤ 0. So the function x 7→ f(x)+µ0·h(x) has an unconstrained

minimum at x0 and thus

∇f(x0) +
m∑
j=1

µj0∇hj(x0) = 0.

Finally, putting x = x0 in (5.14) shows that µ0 · h(x0) = 0. �

5.3. Convex duality I

In this section we reinterpret and extend the theory above to provide a

duality theory for convex optimization problems. Our references are Boyd–

Vandenberghe [B-V] and Calafiore–El Ghaoui [C-EG].
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5.3.1. Dual problems.

NOTATION. Given f, g1, . . . , gm, h1, . . . , hp : Rn → R, we as usual write

g =

 g1...
gm

 , h =

h1...
hp

 .
We return to our general minimization problem, with both inequality

and equality constraints, which we for this section write as finding x0 ∈ Rn
to

(P)

{
minimize f(x), subject to

g(x) = 0, h(x) ≤ 0.

DEFINITION. The associated Lagrangian function is

L(x, λ, µ) = f(x) + λ · g(x) + µ · h(x)

for x ∈ Rn, λ ∈ Rm, µ ∈ Rp. That is,

L(x, λ, µ) = f(x) +

m∑
k=1

λkgk(x) +

p∑
j=1

µjhj(x).

DEFINITION. The corresponding dual function is

g(λ, µ) = inf
x∈Rn

L(x, λ, µ) = inf
x∈Rn

{f(x) + λ · g(x) + µ · h(x)}

EXAMPLE. Assume f is convex, and consider the problem

(P)

{
minimize f(x), subject to

Ax = b, x ≥ 0.

So h(x) = −x, g(x) = Ax− b. The dual function is

g(λ, µ) = min
x
{f(x) + λ · g(x) + µ · h(x)}

= min
x
{f(x) + λ · (Ax− b) + µ · (−x)}

= −λ · b+ min
x

{
f(x) + (ATλ− µ) · x

}
= −λ · b−max

x

{
(µ−ATλ) · x− f(x)

}
.

Therefore

g(λ, µ) = −λ · b− f∗(µ−ATλ)

where f∗(y) = maxx{x · y − f(x)} is the dual convex function to f . �
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DEFINITION. The dual problem to (P) is to find λ0 ∈ Rm, µ0 ∈ Rp to

(D)

{
maximize g(λ, µ),

subject to µ ≥ 0.

EXAMPLE (Linear programming yet again). If we set f(x) = c ·
x in our previous example, we once again encounter the canonical linear

programming progrem

(P)

{
minimize x · c, subject to

Ax = b, x ≥ 0.

Now

f∗(y) = max
x
{(y − c) · x} =

{
0 if y = c

∞ otherwise;

therefore

g(λ, µ) =

{
−λ · b if µ−ATλ = c

−∞ otherwise.
.

The dual problem is then

(D)

{
maximize − λ · b, subject to

µ−ATλ = c, µ ≥ 0.

We write y = −λ to recover the usual dual canonical problem.

This example provides a belated answer to a question left over from

Chapter 2: where did the linear programming dual problem come from? �

THEOREM 5.3.1. We have the “weak duality” inequality

(5.15) sup
µ,λ
µ≥0

g(λ, µ) ≤ inf
g(x)=0
h(x)≤0

f(x).

If this is a strict inequality, we say there is a duality gap.

Proof. Assume µ ≥ 0 and g(x) = 0, h(x) ≤ 0. Then

L(x, λ, µ) = f(x) + µ︸︷︷︸
≥0

·h(x)︸︷︷︸
≤0

+λ · g(x)︸︷︷︸
=0

≤ f(x).

Since

g(λ, µ) = inf
z∈Rn

L(z, λ, µ) ≤ L(x, λ, µ),

we deduce that g(λ, µ) ≤ f(x). This implies (5.15) . �
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5.3.2. Slater’s condition again.

Hereafter we will need to consider linear equality constraints, and so

assume that

g(x) = Ax− b,
where A is an m × n matrix and m ≤ n. We will suppose also the nonde-

generacy condition that

(5.16) the rank of A is m.

(Recall from the remark on page 19 that we can always reduce to this situ-

ation.)

Thus our primal problem becomes finding x0 ∈ Rn to

(P̂)

{
minimize f(x), subject to

Ax = b, h(x) ≤ 0.

and the dual problem is finding µ0 ∈ Rm, λ0 ∈ Rp to

(D̂)

{
maximize g(λ, µ),

subject to µ ≥ 0,

where g(λ, µ) = infx L(x, λ, µ) for the Lagrangian function

L(x, λ, µ) = f(x) + λ · (Ax− b) + µ · h(x).

THEOREM 5.3.2. Assume f, h1, . . . , hp : Rn → R are convex. Suppose

also this modified Slater’s condition holds:

(Ŝ) there exists a point x̄ ∈ Rn with h(x̄) < 0, Ax̄ = b.

(i) Then if x0 solves (P̂), there exists a pair (λ0, µ0) solving (D̂).

(ii) Furthermore,

(5.17) g(λ0, µ0) = f(x0).

Hence we have strong duality:

(5.18) max
µ,λ
µ≥0

g(λ, µ) = min
g(x)=0
h(x)≤0

f(x).

Proof. 1. Theorem 4.2.1 provides us with (γ0, λ0, µ0) 6= (0, 0, 0) satisfying

the F. John conditions that

γ0∇f(x0) +ATλ0 +∇h(x0)
Tµ0 = 0

and

γ0 ≥ 0, µ0 ≥ 0, µ0 · h(x0) = 0.
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We once again claim that

(5.19) γ0 6= 0.

To see this, assume otherwise. Then

(5.20) ATλ0 +∇h(x0)
Tµ0 = 0.

2. Take the inner product with x̄− x0, where x̄ satisfies (Ŝ), to deduce

0 = ATλ0 · (x̄− x0) +∇h(x0)
Tµ0 · (x̄− x0)

= λ0 · (Ax̄−Ax0) + µ0 · ∇h(x0)(x̄− x0).

But Ax̄−Ax0 = b− b = 0, and so

µ0 · ∇h(x0)(x̄− x0) = 0.

Furthermore, convexity implies for j = 1, . . . , p that

hj(x0) +∇hj(x0) · (x̄− x0) ≤ hj(x̄).

Therefore

µ0 · h(x0) ≤ µ0 · h(x̄).

Now if µ0 6= 0, our modified Slater’s condition (Ŝ) implies µ0 · h(x̄) < 0 and

this gives the contradiction µ0 · h(x0) < 0.

3. Hence µ0 = 0 and so (5.20) becomes

ATλ0 = 0.

But recalling our nondegeneracy assumption (5.16), we see that therefore

λ0 = 0.

In summary, we have shown that if γ0 = 0, then also µ0 = λ0 = 0.

However this is impossible, since not all of these equal zero.

4. As usual, (5.19) implies that we have the KKT condition

(5.21) ∇f(x0) +ATλ0 +∇h(x0)
Tµ0 = 0,

for possibly new choices of µ0, λ0. We next demonstrate that this identity

implies (5.17). To do so, we use the convexity of f and h to compute for

any x ∈ Rn that

f(x0) = f(x0) + λ0 · (Ax0 − b) + µ0 · h(x0)

≤ f(x) +∇f(x0) · (x0 − x)

+ λ0 · [(Ax0 −Ax) + (Ax− b)]
+ µ0 · [h(x) +∇h(x0)(x0 − x)]

= f(x) + λ0 · (Ax− b) + µ0 · h(x)



138 5. CONVEX OPTIMIZATION

+ [∇f(x0) +ATλ0 +∇h(x0)
Tµ0] · (x0 − x)

= f(x) + λ0 · (Ax− b) + µ0 · h(x),

according to (5.21). Taking the infimum over x, we deduce that therefore

f(x0) ≤ g(λ0, µ0).

The opposite inequality follows from (5.15). �

REMARK. A lesson from this proof is that when we have convexity, the

existence of the KKT Lagrange multipliers implies duality, meaning that

that there is no duality gap between the primal and dual problems. �

5.4. Convex duality II

We explain next an alternate approach to convex duality, following Borwein–

Lewis [B-L].

5.4.1. Fenchel duality.

Suppose that we are given two convex, proper, lower semicontinuous

functions

f : Rn → (−∞,∞], g : Rm → (−∞,∞]

and an m× n matrix A.

DEFINITION. The domain of f is

dom f = {x ∈ Rn | f(x) <∞},

and the domain of g is

dom g = {y ∈ Rm | g(y) <∞}.

�

Now if x ∈ Rn and y ∈ Rm, we have

f(x) + f∗(AT y) ≥ x ·AT y

and

g(Ax) + g∗(−y) ≥ −Ax · y.
Adding these inequalities and rewriting, we see that

(5.22) f(x) + g(Ax) ≥ −f∗(AT y)− g∗(−y) (x ∈ Rn, y ∈ Rm).

This suggests that we introduce the primal problem

(P) minimize f(x) + g(Ax) (x ∈ Rn)
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and the dual problem

(D) maximize − f∗(AT y)− g∗(−y) (y ∈ Rm).

Then (5.22) establishes weak duality:

THEOREM 5.4.1. We have

(5.23) sup
y∈Rm

{
−f∗(AT y)− g∗(−y)

}
≤ inf

x∈Rn
{f(x) + g(Ax)} .

Notice that we allow for the possibility that f, g and their dual functions

take the value ∞.

When do we have equality in (5.23)? The idea, as in Section 5.2.3 above,

will be to introduce a value function and to study its subdifferential.

DEFINITION. The value function is

v(a) = inf
x∈Rn

{f(x) + g(Ax+ a)}

for a ∈ Rm.

We assume v never takes on the value −∞.

LEMMA 5.4.1. The value function v : Rm → (−∞,∞] is convex and

lower semicontinuous.

DEFINITION. We say that f, g and A satisfy the duality condition if

(5.24) the value function v does not take on the value ∞ near 0.

REMARK. This means that there exists a small number δ > 0 such that

if a ∈ Rm and |a| ≤ δ, then we can write

(5.25) a = y −Ax for some y ∈ dom g, x ∈ dom f .

Thus

v(a) ≤ f(x) + g(Ax+ a) = f(x) + g(y) <∞.
�

THEOREM 5.4.2. Assume that x0 ∈ Rn solves the primal minimiza-

tion problem (P), and suppose also that f, g, A satisfy the duality condition

(5.24).

(i) Then there exists y0 ∈ Rm such that

(5.26) f(x0) + g(Ax0) = −f∗(AT y0)− g∗(−y0).
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(ii) We thus have strong duality:

(5.27) min
x∈Rn

{f(x) + g(Ax)} = max
y∈Rm

{
−f∗(AT y)− g∗(−y)

}
.

Proof. As noted above, the duality condition (5.24) implies that the value

function v is finite-valued near zero and consequently ∂v(0) 6= ∅. Select

−y0 ∈ ∂v(0).

Then for any x ∈ Rn and a ∈ Rm we have

f(x0) + g(Ax0) = v(0)

≤ v(a) + a · y0
≤ f(x) + g(Ax+ a) + a · y0
= −(AT y0 · x− f(x))− (−y0 · (Ax+ a)− g(Ax+ a)).

Take the infimum over a:

f(x0) + g(Ax0) ≤ −(AT y0 · x− f(x))− g∗(−y0);

and then take the infimum over x:

f(x0) + g(Ax0) ≤ −f∗(AT y0)− g∗(−y0).

The reverse inequality follows from (5.23). �

5.4.2. Semidefinite programming. A natural generalization of stan-

dard linear programming to symmetric matrices is called semidefinite pro-

gramming.

NOTATION. (i) We will write Sn to denote the linear space of n × n

symmetric matrices and

Sn+ = {A ∈ Sn | A � 0}

to denote the nonnegative definite symmetric matrices.

(ii) The inner product of two matrices A,B ∈ Sn is

A ·B =

n∑
i,j=1

aijbij .

�
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Given now matrices {Ak}mk=1, C in Sn and b ∈ Rm, we introduce the

semidefinite primal problem

(P)


minimize C ·X, subject to

A1 ·X = b1, · · · , Am ·X = bm

X � 0.

This is a matrix version of the canonical linear programming problem, for

symmetric matrices X.

Duality. What is the dual problem? To figure this out, set

(5.28) AX = [A1 ·X, · · · , Am ·X]T

and rewrite (P) as minimizing f(X) + g(AX) for

f(X) =

{
C ·X if X � 0

∞ otherwise

and

g(y) =

{
0 if y = b

∞ otherwise.

Then g∗(z) = z · b. Furthermore, if W ∈ Sn we have

f∗(W ) = sup
X∈Sn

{W ·X − f(X)}

= sup
X�0
{(W − C) ·X}

=

{
0 if W � C
∞ otherwise.

Note carefully: the matrix inequality “W � C” means that C −W ∈ Sn+.

We can also calculate that

AT y =
m∑
k=1

ykAk.

Therefore the Finchel dual problem to maximize −f∗(AT y) − g∗(−y)

becomes the semidefinite dual problem

(D)

{
maximize y · b,
subject to

∑m
k=1 ykAk � C.

This is an analog of the linear programming canonical dual problem,

except that the constraint is now an inequality for symmetric matrices. Note
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carefully that in (P) the unknown is a symmetric matrix X, but in (D) the

unknown is a vector y ∈ Rm.

THEOREM 5.4.3. (Duality for semidefinite programming) Suppose

that there exists a feasible matrix X̄ for (P) with

(5.29) X̄ > 0.

Assume also that A : Sn → Rm is onto.

Then if X0 ∈ Sn+ solves the primal semidefinite programming problem

(P), there exists y0 ∈ Rm that is feasible for (D) and satisfies

C ·X0 = b · y0.

Proof. In view of (5.29), there exists λ > 0 so small that

X = X̄ + Y ∈ Sn+
if Y ∈ B(0, λ). Since A : Sn → Rm is onto, there further exists η > 0 such

that A : B(0, 1) ⊇ B(0, η) and therefore A : B(0, λ) ⊇ B(0, λη). Hence

for each a ∈ B(0, λη), there exists X as above such that X ∈ Sn+ and

AX = AX̄ +AY = b− a.

For f, g as above, we have dom f = Sn+, dom g = {b}. Then if δ = λη

and |a| ≤ δ, we can write

a = b−AX
as required by (5.25). Consequently, the duality condition (5.24) holds; and

the rest now follows from Theorem 5.4.2. �

EXAMPLE. The full theory for linear programming does not apply for

semidefinite programming. For instance, let n = 2, m = 1 and

b = 0, C =

[
0 1

1 0

]
, A1 =

[
1 0

0 0

]
.

Then (P) has the optimal solution X = 0. However for all y ∈ R

C − yA =

[
−y 1

1 0

]
/∈ Sn+.

Hence there are no feasible solutions for (D). �

5.5. Minimax and duality

In this final section we discuss the connections between convex duality theory

and minimax conditions, which we encountered earlier in our discussion of

two-person, zero-sum game theory (see page 58).
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REMARK. Returning to the duality theory set forth above in Section

5.3.1, we recall that the primal problem (P) there is to solve

min
g(x)=0
h(x)≤0

f(x) = min
x

max
µ,λ
µ≥0

{f(x) + λ · g(x) + µ · h(x)}

= min
x

max
µ,λ
µ≥0

L(x, λ, µ);

and the dual problem (D) is to find

max
µ,λ
µ≥0

g(λ, µ) = max
µ,λ
µ≥0

min
x
L(x, λ, µ).

Writing the problems this way, we see that strong duality holds if we can

exchange the min and max in these formulas. This demonstrates that convex

duality theory can be written in terms of minimax conditions. �

Continuing this theme, we prove next a general minimax theorem. We

henceforth assume that X ⊂ Rn, Y ⊂ Rm are closed, bounded, convex sets

and we are given a continuous function

L : X × Y → R.

We write L = L(x, y).

DEFINITION. A saddle point (x0, y0) ∈ X × Y for L is a point for

which

(5.30) L(x0, y) ≤ L(x0, y0) ≤ L(x, y0) for all x ∈ X, y ∈ Y .

REMARK. If L has a saddle point, we have strong duality between the

problems

(P )

{
min f(x)

for x ∈ X
(D)

{
max g(y)

for y ∈ Y ,

where

f(x) = max
y∈Y

L(x, y), g(y) = min
x∈X

L(x, y).

�

THEOREM 5.5.1. (Minimax Theorem) Assume that X ⊂ Rn, Y ⊂ Rm
are non-empty, closed, convex and bounded sets.

Suppose also that

(5.31)

{
x 7→ L(x, y) is convex for each y ∈ Y ,
y 7→ L(x, y) is concave for each x ∈ X.
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Then L has a saddle point (x0, y0) ∈ X × Y , and we therefore have the

minimax condition

(5.32) min
x∈X

max
y∈Y

L(x, y) = max
y∈Y

min
x∈X

L(x, y).

Proof. 1. Let ε > 0 and define Lε(x, y) = L(x, y) + ε|x|2. Define also

(5.33) fε(y) = min
x∈X

Lε(x, y) (y ∈ Y ).

Since x 7→ Lε(x, y) is strictly convex, there exists for each y ∈ Y a unique

point e(y) ∈ X for which

(5.34) fε(y) = Lε(e(y), y).

2. We show now that

e : Y → X is continuous.

To see this, let {yk}∞k=1 be any sequence in Y such that limk→∞ yk = y0.

Let xk = e(yk) and consider any convergent subsequence: limj→∞ xkj = x0.

We have for all x ∈ X that

Lε(xkj , ykj ) = Lε(e(ykj ), ykj ) ≤ Lε(x, ykj ).

Therefore

Lε(x0, y0) ≤ Lε(x, y0) (x ∈ X).

As a minimizing point is unique, this implies x0 = e(y0).

3. The function fε(y) = Lε(e(y), y) is continuous and so we can select a

point yε ∈ Y that maximizes fε:

(5.35) fε(yε) = max
y∈Y

fε(y).

Define then

(5.36) xε = e(yε).

We claim that

(xε, yε) is a saddle point for Lε.

To see this, note first that (5.36), (5.34) and (5.33) imply for each x that

Lε(xε, yε) = Lε(e(yε), yε) = fε(yε) ≤ Lε(x, yε).

Hence

Lε(xε, yε) ≤ Lε(x, yε) (x ∈ X).
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4. The other saddle point inequality is trickier and uses the concavity

of L in y. Now for each x ∈ X, y ∈ Y and 0 < θ < 1, we have

Lε(x, (1− θ)yε + θy) ≥ (1− θ)Lε(x, yε) + θLε(x, y)

≥ (1− θ)fε(yε) + θLε(x, y),

the second inequality following from (5.33). Put

x = e((1− θ)yε + θy)

and recall (5.34), to deduce

fε((1− θ)yε + θy) = Lε(e((1− θ)yε + θy), (1− θ)yε + θy)

≥ (1− θ)fε(yε) + θLε(e((1− θ)yε + θy), y),

Then (5.35) gives

fε(yε) ≥ fε((1− θ)yε + θy)

≥ (1− θ)fε(yε) + θLε(e((1− θ)yε + θy), y);

and consequently

fε(yε) ≥ Lε(e((1− θ)yε + θy), y).

Let θ → 0, to conclude that

Lε(xε, yε) = fε(yε) ≥ Lε(e(yε), y) = Lε(xε, y).

This is the other saddle point inequality.

5. We have shown for all x ∈ X, y ∈ Y that

Lε(xε, y) ≤ Lε(xε, yε) ≤ Lε(x, yε).

Select a subsequence εk → 0 and points x0, y0 such that

xεk → x0, yεk → y0.

Then

L(x0, y) ≤ L(x0, y0) ≤ L(x, y0).

This proof is based upon Karlin [K]. �

EXAMPLE. (Zero-sum matrix games again) The Minimax Theorem

provides a quick new proof of the existence of mixed strategies for two-

person, zero-sum matrix games, discussed earlier in Section 2.4.2.

Remember that the collection of mixed strategies for Player I is

P =

{
p ∈ Rm | pi ≥ 0 (i = 1, . . . ,m),

m∑
i=1

pi = 1

}
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and the collection of mixed strategies for Player II is

Q =

q ∈ Rn | qj ≥ 0 (j = 1, . . . , n),
n∑
j=1

qj = 1

 .

Define

L(q, p) = p ·Aq (p ∈ P, q ∈ Q).

Then {
q 7→ L(p, q) is linear (and thus convex) for each p,

p 7→ L(p, q) is linear (and thus concave) for each q.

Hence there exists a mixed strategy saddle point (p0, q0):

max
p∈P
{p ·Aq0} = p0 · (Aq0) = min

q∈Q
{p0 ·Aq}.

�



APPENDIX

A. Notation

Rn denotes n-dimensional Euclidean space, a typical point of which is the

column vector

x =

x1...
xn

 .
To save space we will often write the corresponding row vector

x = [x1 · · · xn]T .

If x, y ∈ Rn, we define

x · y =
n∑
i=1

xiyi = xT y, |x| = (x · x)
1
2 =

(
n∑
i=1

x2i

)1/2

We have the Cauchy-Schwarz inequality

|x · y| ≤ |x||y|

and the parallelogram law

|x− y|2 + |x+ y|2 = 2|x|2 + 2|y|2.

We will also write

(i) B(x, r) = {y ∈ Rn | |x− y| ≤ r} for the closed ball with center x

and radius r > 0,

(ii) B0(x, r) = {y ∈ Rn | |x− y| < r} for the open ball with center x

and radius r > 0, and

147
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(iii) ∂B(x, r) = {y ∈ Rn | |x− y| = r} for the boundary of B(x, r).

B. Linear algebra

Throughout these notes A denotes an m × n matrix and AT denotes its

transpose:

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 AT =

a11 . . . am1
...

. . .
...

a1n . . . amn

 .
We can interpret A and AT as linear mappings:

A : Rn → Rm, AT : Rm → Rn.

The vector equation

Ax = b

is the system of m equationsa11 . . . a1n
...

. . .
...

am1 . . . amn


x1...
xn

 =

 b1...
bm

 .
LEMMA. (Transpose formula) If A is an m×n matrix, x ∈ Rn, y ∈ Rm,

then

(Ax) · y = x · (AT y).

Proof. The ith entry of Ax is (Ax)i =
∑n

j=1 aijxj (i = 1, . . . ,m); and the

jth entry of AT y is (AT y)j =
∑m

i=1 yiaij (j = 1, . . . , n). So

(Ax) · y =
n∑
i=1

(Ax)iyi =
m∑
i=1

n∑
j=1

aijxjyi =
n∑
j=1

(AT y)jxj = x · (AT y).

�

An n × n matrix A is symmetric if A = AT , and a symmetric matrix

A is nonnegative definite if

yTAy =

n∑
i,j=1

aijyiyj ≥ 0 for all y ∈ Rn.

We then write A � 0. We say A is positive definite if

yTAy =
n∑

i,j=1

aijyiyj > 0 for all y ∈ Rn;

and write A � 0.
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C. Multivariable chain rule

Let f : Rn → R, f = f(x) = f(x1, . . . , xn). Then we define for k = 1, . . . , n

the k-th partial derivative

∂f

∂xk
(x) = lim

h→0

f(x1, . . . , xk + h, . . . , xn)− f(x1, . . . , xk, . . . , xn)

h
,

provided this limit exists. We likewise define

∂2f

∂xk∂xl
=

∂

∂xl

(
∂f

∂xk

)
(k, l = 1, . . . , n),

and recall that ∂2f
∂xk∂xl

= ∂2f
∂xl∂xk

if f is twice continuously differentiable.

The gradient ∇f is the vector

∇f =


∂f
∂x1
...
∂f
∂xn


and the Hessian matrix of second partial derivatives ∇2f is the symmetric

n× n matrix

∇2f =


∂2f

∂x21
. . .

∂2f

∂x1∂xn
...

. . .
...

∂f

∂x1∂xn
. . .

∂2f

∂x2n

 .

The chain rule tells us how to compute the partial derivatives of com-

posite functions, made from simpler functions. For this, assume that we are

given a function

f : Rn → R,

which we write as f(x) = f(x1, . . . , xn). Suppose also we have functions

g1, . . . , gn : Rm → R

so that gi(y) = gi(y1, . . . , ym) for i = 1, . . . , n. We then build the composite

function h : Rm → R by setting xi = gi(y) in the definition of f ; that is, we

define

h(y) = f(g1(y), g2(y), . . . , gn(y)) = f(g(y))

for g = [g1 g2 . . . gn]T .
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THEOREM. (Multivariable chain rule) We have

∂h

∂yk
(y) =

n∑
i=1

∂f

∂xi
(g(y))

∂gi
∂yk

(y) (k = 1, . . . ,m).

D. Open and closed sets

DEFINITION. If {xk}∞k=1 is a sequence in Rn we say

lim
k→∞

xk = x0

if

lim
k→∞

|xk − x0| = 0.

DEFINITION. A set F ⊆ Rn is called closed if for all sequences {xk}∞k=1 ⊆
F such that limk→∞ x

k = x0, then x0 ∈ F .

So a set F ⊆ Rn is closed when every point in Rn that is a limit of points

in F also belongs to F .

DEFINITION. A set U ⊆ Rn is called open if for each point x ∈ U , there

exists r > 0 such that B(x, r) ⊆ U .

NOTATION. F c = complement of F in Rn = {x ∈ Rn | x 6∈ F}.

LEMMA.

(i) F ⊆ Rn is closed if and only if U = F c is open.

(ii) Let F1, . . . , Fp be closed subsets of Rn. Then

F =

p⋃
i=1

Fi is also closed.

Therefore a finite union of closed sets is closed.

Proof. Let {xk}∞k=1 ⊆ F and suppose the limit

lim
k→∞

xk = x0

exists. We must show x0 ∈ F .

There exists m ∈ {1, . . . , p} and a subsequence 1 ≤ k1 < k2 < . . . <

kj → ∞ such that xkj ∈ Fm for all kj . Since x0 = limj→∞ x
kj and Fm is

closed, x0 ∈ Fm. Hence x0 ∈ F =
⋃p
i=1 Fi. �
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E. Convergent subsequences

DEFINITION. A sequence {xk}∞k=1 in Rn is bounded if there exists a

constant M such that

|xk| ≤M (k = 1, 2, . . .).

THEOREM (Bolzano-Weierstrass Theorem). Every bounded sequence

in Rn contains a convergent subsequence.

So if {xk}∞k=1 ⊂ Rn is bounded, there exists a sequence 1 ≤ k1 < k2 <

. . . < kj →∞ and a point x0 ∈ Rn so that

lim
j→∞

xkj = x0.

F. Extreme values

DEFINITION. A set E ⊆ Rn is bounded if there exists a constant M

such that

|x| ≤M for all x ∈ E.

THEOREM (Extreme Value Theorem). Let C ⊆ Rn be closed and

bounded. If f : C → R is continuous, then there exists y ∈ C with

f(y) = min
x∈C

f(x)

Consequently a continuous function f attains its minimum (and maxi-

mum) on any closed, bounded set.





EXERCISES

Some of the following problems are taken from Franklin [F1].

1. What is the maximum value attained by the function f(x) = x
1
x

on (0,∞)?

2. In the two-dimensional world of Flatland a corridor of width a > 0

meets at right angles another corridor of width b > 0, as drawn.

What is the length l of the longest (one-dimensional) pipe that

can be moved from one corridor to the other?

θ

a

b

l2

l1

3. Prove that, as stated on page 6, the angles ξ of incidence and

reflection agree for a light ray going from the point A to the point

B by reflecting off the x-axis.

4. Four houses are located at the corners of a square with side length

1 mile. Draw, and calculate the length of, the shortest network of

roads that can be built to connect all four houses.
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5. The electric circuit drawn below is called a Wheatstone bridge.

n0

n1

r1

n2

n3

r2

r3

r4

r5

Suppose a battery is connected across the nodes n0 and n3. Show

that if the values of the resistors satisfy

r1
r2

=
r4
r5
,

then no current flows between nodes n1 and n2.

6. (i) What point on the line determined by the intersection of the

planes x+ 2y+ 3z = 0 and 2x+ 3y+ z = 4 is closest to the origin?

(ii) For which radius r and height h does a cylindrical tin can of

given volume V have the least surface area?

7. Let Γ be a smooth curve in R3 parameterized by

x(t) = [x1(t), x2(t), x3(t)]T

for t ∈ R. Suppose that h(t) = f(x(t)) has a minimum at t = 0.

Show that ẋ(0) is perpendicular to ∇f(x0), where x0 = x(0).

8. (Continued) Let the intersection of the level sets {g1 = 0} and

{g2 = 0} in R3 be a smooth curve Γ along which ∇g1 ×∇g2 6= 0.

Assume that x0 ∈ Γ solves the problem of minimizing f , subject

to g1, g
2 = 0.

Explain geometrically why there exist Lagrange multipliers λ10,

λ20 such that

∇f(x0) + λ10∇g1(x0) + λ20∇g2(x0) = 0.

9. Rewrite as a canonical linear programming problem:
maximize x2, subject to

3x1 − 4x2 = 7, 4x1 + 5x3 = 3

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

State the dual problem.
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10. (i) Consider the linear system

Ax = b, x ≥ 0

with nothing to be minimized. Show how to select c so that this

is a canonical minimum problem.

(ii) Write the linear system Ax = b as a canonical minimum prob-

lem. What is the corresponding dual problem?

11. Find the dual of the problem{
minimize c · x, subject to

−d ≤ Ax− b ≤ d, x ≥ 0.

12. Show how to convert the canonical problem (P) into a problem

of the standard form (P ∗). Find the corresponding dual problem

(D∗) and show how to convert this into the dual (D) of the original

problem.

13. Suppose A is a symmetric n × n matrix. Assume b ∈ Rn and

consider the linear programming problem:{
minimize b · x, subject to

Ax = b, x ≥ 0.

Show that any feasible x is optimal.

14. Find the dual problem of
minimize x1 + x2 + x3, subject to

x1 + 2x2 + 3x3 = 1,

6x1 + 5x2 + 4x3 = 2,

x ≥ 0.

Write the equilibrium conditions.

15. Consider the canonical problem

(P )

{
minimize c · x, subject to

Ax = b, x ≥ 0.

Suppose x is feasible for (P), and there exist vectors y, z such that

AT y + z = c, z · x = 0, z ≥ 0.

Show that x is optimal for (P) and y is optimal for the dual prob-

lem (D).
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16. The vector x0 = [43
10
3 0 0]T is an optimal solution of

(P )


minimize 3x1 + 2x2, subject to

2x1 + x2 − x3 = 6,

x1 + 2x2 − x4 = 8,

x ≥ 0.

Use the equilibrium equations to find an optimal solution y0 =

[y1, y2]
T of the dual problem (D).

17. Use the equilibrium equations to solve both the primal problem{
minimize 3x1 + x2 + 4x3 + 6x4, subject to

x1 + x3 = 2, x1 + x2 + x3 = 4, x ≥ 0

and its dual problem.

18. Derive the equilibrium equations for the standard linear problem{
minimize c · x, subject to

Ax ≥ b, x ≥ 0.

19. Find the equilibirum conditions for the Chebyshev approximation

problem:{
minimize x0, subject to

−x0 ≤
∑n

j=1 aijxj − bi ≤ x0 (i = 1, . . . ,m)

20. Solve this problem:
minimize 5x1 + 6x2, subject to

3x1 + 4x2 ≤ 12

4x1 + 5x2 ≤ 20

x ≥ 0.

21. Find all the basic solutions of1 2 3

4 5 6

7 8 9

x =

0

3

6

 .
22. Find all the basic solutions of1 2 3

4 5 6

7 0 1

x =

0

3

6

 .
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23. Find the optimal basic solution for
minimize x2 − x3, subject to[

1 0 −1

1 1 1

]
x =

[
0

7

]
, x ≥ 0.

24. Guess the optimal solution of
minimize 2x1 + x2 + x3, subject to[

1 2 3

2 3 4

]
x =

[
5

7

]
, x ≥ 0.

Then solve the two equilibrium equations for the optimal dual

vector y.

25. Starting with the basic solution that depends on the first two

columns, apply Phase II to this program:
minimize x2, subject to[
−1 2 3

2 3 1

]
x =

[
1

5

]
, x ≥ 0.

26. Use Phase I to compute one of the basic feasible solutions of[
1 0 −1

1 1 0

]
x =

[
−1

1

]
, x ≥ 0.

Remember to multiply the first equation by −1; then start with

x1 = x2 = x3 = 0, z1 = z2 = 1.

27. Apply Phase I to this problem:[
0 1 2

1 2 3

]
x =

[
3

4

]
, x ≥ 0.

28. Use the simplex algorithm to solve
minimize x1 + x3, subject to[

1 2 3

2 3 4

]
x =

[
4

6

]
, x ≥ 0.

29. Consider the canonical problem

(P )

{
minimize c · x, subject to

Ax = b, x ≥ 0.

for the matrix

A =

[
1 0 −1

0 1 0

]
.
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Identify those pairs of vectors b, c that produce each of the four

cases in the Duality Theorem.

30. Recall that the following primal problems are equivalent:

(P)


minimize c · x,

subject to

Ax = b, x ≥ 0

(P∗)


mininimize c · x,

subject to

Ãx ≥ b̃, x ≥ 0,

for

Ã =

[
A

−A

]
, b̃ =

[
b

−b

]
.

Write down the corresponding dual problems (D),(D∗) and

show that (D) has a feasible solution if and only if (D∗) has a

feasible solution.

31. Show that if a canonical problem (P) has a feasible solution x and

if c ≥ 0, then it has an optimal solution.

32. Draw the region in R2 determined by solutions of these inequali-

ties: {
3x1 + x2 ≥ 6, x1 + x2 ≥ 4

x1 + 3x2 ≥ 6, x ≥ 0.

Suppose

Cx =

[
5x1 + x2
x1 + 2x2

]
.

Show that the efficient points for the corresponding multiobjective

problem lie on the line segments [p, q] and [q, r], where

p =

[
0

6

]
, q =

[
1

3

]
, r =

[
3

1

]
.

33. Prove that if the multiobjective linear program{
minimize Cx, subject to

Ax = b, x ≥ 0

has an efficient solution, then it has a basic efficient solution.

34. A two-person, zero-sum game has the payoff matrix−3 0 5

0 3 8

1 4 9

 .
Show that this matrix has a saddle point, and find the optimal

strategies for each player.
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35. Use linear programming to solve the game with payoff matrix

A =

[
5 −7

−9 4

]
.

To “solve the game” means to find the value ω and optimal mixed

strategies p0, q0.

36. Use linear programming to solve the game with payoff matrix

A =

[
−2 3 −1

1 −1 2

]
.

37. Find a maximal flow and minimum cut for this network:

s s'

6

1

3

4

3

1

2

5 1

2

38. Find a maximal flow and minimum cut for this network, with

the same geometry as the previous problem, but different flow

capacities:

s s'6

1

3
4

3

1

2

5

4

2

39. Solve the optimal transport problem for

s =

[
6

3

]
, d =

1

1

7

 , C =

[
4 3 1

2 1 3

]
.

(Hint: The answer X0 has integer entries. Try to guess X0 and

confirm you are correct by computing the corresponding u0, v0.)

40. Prove by induction that if C is convex and {a1, . . . , am} ⊂ C, then∑m
i=1 θia

i ∈ C for all choices of θi ≥ 0 such that
∑m

i=1 θi = 1.

41. (i) Show that the half-plane 3x1 − 5x2 < 7 is convex, but not

closed.

(ii) Show that the annulus 1 ≤ |x| ≤ 2 is closed, but not convex.
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42. Assume x ∈ Rn and r > 0. Show that the ball B(x, r) = {y ∈ Rn |
|x− y| ≤ r} is closed and convex.

43. Prove that a convex polytope is closed and convex.

44. Show that the polar dual of C = B(0, R) is C0 = B(0, 1
R).

45. Let C1 and C2 be convex, disjoint, and closed sets, and suppose C1

is bounded. Show that the distance between the sets is positive,

and prove there is a strictly separating plane.

46. Draw the cone C = {Ax | x ≥ 0} for the matrix

A =

[
4 1 −2

1 0 5

]
47. A cone in RN is a set C such that if x ∈ C, then µx ∈ C for all

scalars µ ≥ 0. A finite cone has the form

C = {x1a1 + x2a
2 + . . .+ xna

n | xj ≥ 0},

where a1 . . . , an ∈ RN . Find a cone in RN that is not a finite cone.

48. Note that

(i) Ax = 0, x ≥ 0 has a non-zero solution x

if and only if Ax = 0, e · x = 1 has a solution x ≥ 0, where

eT = [1 . . . 1]T . Prove that the Farkas alternative of this is

(ii) ATy > 0 has a solution y.

49. Find the Farkas alternative of this assertion: The system1 2 3

4 5 6

7 8 9

x = b

has a solution x with x1 ≥ 0 and x3 ≥ 0. (Hint: Set x2 = u2 − v2,
with u2 ≥ 0, v2 ≥ 0.)

50. Find the Farkas alternative to the assertion

(i)∗ Ax ≤ b has a solution x.

(Hint: First write down statements (i) and (ii) of the usual Farkas

alternative. Introduce slack variables to rewrite (i)∗ into the form

(i).)

51. Prove by induction that if f : R→ R is convex, then

f

(
m∑
i=1

θixi

)
≤

m∑
i=1

θif(xi)
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for all positive integers m, all x1, . . . , xm ∈ R, and all θ1, . . . , θm ≥
0 such that

∑m
i=1 θi = 1.

52. Determine which of the following functions f : R→ R are convex:

(a) f(x) = e−x

(b) f(x) = e−x
2

(c) f(x) = |x|5
(d) f(x) = (x2 − 1)2.

53. Determine which of the following functions f : Rn → R are convex:

(a) f(x) = |x|4
(b) f(x) = e−|x|

2

(c) f(x) = ea·x, where a ∈ Rn.

54. Suppose that f1, . . . , fm : Rn → R are convex functions. Show

that the function

g(x) = max{fk(x) | k = 1, . . . ,m}

is also convex.

55. Let f : Rn → R be a convex function. Prove that x0 ∈ Rn satisfies

f(x0) = minx∈Rn f(x) if and only if 0 ∈ ∂f(x0).

56. Compute ∂f for these convex functions f : R→ R:

(a) f(x) = max{x2 + x, x2 − x}
(b) f(x) = |x|+ |x− 1|.

57. Compute f∗ for the following functions f : R→ R:

(a) f(x) = |x|p
p (1 < p <∞)

(b) f(x) = ex

(c) f(x) = |x|.
58. Use Jensen’s inequality to prove that if a1, . . . , am > 0 and θ1, . . . , θm >

0 with
∑
θi = 1, then

aθ11 · · · a
θm
m ≤ θ1a1 + · · ·+ θmam.

59. Show that if f is convex, then for each interval (a, b) ⊂ R we have

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x) dx ≤ f(a) + f(b)

2
.

60. Prove Hölder’s inequality: If 1
p + 1

q = 1, then∫ b

a
fg dx ≤

(∫ b

a
|f |p dx

) 1
p
(∫ b

a
|g|q dx

) 1
q

.

(Hint: By Young’s Inequality, fg = f
µ µg ≤

|f |p
µpp + µq |g|q

q . Integrate

and then select µ > 0 to minimize the right hand side.)
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61. Solve the problem
maximize (x1 − 3)6 + (x2 − 4)6

subject to x21 + x22 ≤ 25,

x1 + x2 ≥ 7, x ≥ 0.

Draw a relevant picture. Show that (CQ) holds, and verify the

KKT conditions.

62. Consider the problem{
maximize (x1 − 3)2 + (x2 − 4)2

subject to x21 + x22 ≤ 25, x ≥ 0.

Guess the solution x0, and verify the KKT conditions.

63. Consider in two dimensions the problem (MIN*) for minimizing

a function f subject to the inequality constraints h1 ≤ 0, h2 ≤ 0.

Suppose that x0 solves (MIN*) and that h1(x0) = h2(x0) = 0,

with {∇h1(x0),∇h2(x0)} linearly independent.

Draw a picture and explain geometrically why the Lagrange

multipliers µ10, µ
2
0 are nonnegative.

64. Recall that an n×n symmetric matrix A has real eigenvalues. For

such a matrix A, let x0 be a solution of{
minimize x ·Ax,

subject to |x|2 = 1.

Use the KKT conditions to show that x0 is an eigenvector of A,

corresponding to the smallest eigenvalue.

65. Find the solution x0 of{
maximize c · x,
subject to xTAx ≤ 1,

where A is an n× n symmetric, positive definite matrix. What is

the Lagrange multiplier µ0?

66. Let x0 minimize the function f over the set C = {x ∈ Rn | x ≥ 0}.
Use the variational inequality (VI) to show that

∇f(x0) · x0 = 0.

Explain the meaning of this, by considering the the various possi-

bilities for the location of x0 within C.

Assume that the functions h1, . . . , hp : Rn → R are convex and

continuously differentiable.
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67. Show that if h1, . . . , hp are convex, then Slater’s condition implies

the Fromovitz–Mangasarian condition for each x0.

68. Consider the problem

min
x∈Rn

1
2 |Ax− b|

2.

(i) Rewrite this into the form

(P) minimize 1
2 |z|

2, subject to Ax− b = z.

(ii) Show the dual problem is

(D) maximize {b · y − 1
2 |y|

2}, subject to AT y = 0.

69. Solving the previous problem is equivalent to solving

min
x∈Rn

|Ax− b|.

(i) Rewrite this into the form

(P) minimize |z|, subject to Ax− b = z.

(ii) Show the dual problem is

(D) maximize b · y, subject to |y| ≤ 1, AT y = 0.

70. Suppose that x0 ∈ Rn solves the problem{
minimize f(x), subject to

h(x) ≤ 0, x ≥ 0,

where h = [h1 · · · hp]T . Let

L(x, µ) = f(x) + µ · h(x).

Assume the KKT conditions hold and use them to show that

there exists µ0 ∈ Rp such that{
∇xL(x0, µ0) ≥ 0, ∇xL(x0, µ0) · x0 = 0, x0 ≥ 0

∇µL(x0, µ0) ≤ 0, ∇µL(x0, µ0) · µ0 = 0, µ0 ≥ 0.

(Notation: ∇x means the gradient with respect to x ∈ Rn; ∇µ
means the gradient with respect to µ ∈ Rp.)

71. Select c ∈ Rn, b ∈ Rm and define

f(x) =

{
x · c if x ≥ 0

∞ otherwise,
g(y) =

{
0 if y = b

∞ otherwise.

Let A be an m× n matrix. Interpret the problems of minimizing

f(x)+g(Ax) and maximizing −f∗(AT y)−g∗(−y) in terms of linear

programming.
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72. Show that the function L : Rn × Rn → R defined by

f(x, y) = x · y

is not convex, but{
x 7→ L(x, y) is convex for each y,

y 7→ L(x, y) is convex for each x.

73. Define

L(x, y) = x · c+ y · (b−Ax).

and suppose that (x0, y0) satisfies the saddle point condition

L(x0, y) ≤ L(x0, y0) ≤ L(x, y0)

for all y ∈ Rm and x ∈ Rn with x ≥ 0. Show that x0 solves the

canonical linear programming problem problem (P) and y0 solves

the dual problem (D).

(Hint: Show that Ax0 = b, AT y0 ≤ c and x0 · (AT y0− c) = 0.)
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